Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/136663
Campo DC Valoridioma
dc.contributor.authorSalas Cáceres, José Ignacioen_US
dc.contributor.authorBalia, Riccardoen_US
dc.contributor.authorSalas Pascual, Marcosen_US
dc.contributor.authorLorenzo Navarro, Javieren_US
dc.contributor.authorCastrillón Santana, Modestoen_US
dc.date.accessioned2025-03-17T09:59:47Z-
dc.date.available2025-03-17T09:59:47Z-
dc.date.issued2025en_US
dc.identifier.issn2352-3409en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/136663-
dc.description.abstractVegetation maps are an essential tool for territorial planning, enabling the identification of areas requiring protection and facilitating the study of key ecosystem dynamics such as their evolution over time and the threats they face. These aspects are especially critical in island territories, where their fragmented nature and isolation from the mainland pose significant challenges to the development of such documentation. Traditionally, these maps have relied on local experts, requiring extensive fieldwork, significant time and financial resources. To address these challenges, a novel dataset focused on Gran Canaria (Canary Islands, Spain) is presented, designed to allow researchers to develop and test deep learning models that automatically generate vegetation maps using computer vision techniques. This dataset is unique in the field of aerial image-based semantic segmentation, as it provides detailed annotations for 20 well-defined vegetation communities, going beyond the broad classifications commonly found in existing datasets (e.g., forests or grasslands). Additionally, an alternative version of the dataset includes five non-vegetal classes, such as water bodies, roads, or buildings to support more visually comprehensive segmentation tasks.en_US
dc.languageengen_US
dc.relation.ispartofData in Briefen_US
dc.sourceData in Brief [EISSN 2352-3409], v. 59, (Abril 2025)en_US
dc.subject24 Ciencias de la vidaen_US
dc.subject.otherComputer Visionen_US
dc.subject.otherEcologyen_US
dc.subject.otherRemote Sensingen_US
dc.subject.otherSemantic Segmentationen_US
dc.subject.otherVegetation Mappingen_US
dc.titleGran canaria vegetation segmentation dataset from multi-year aerial imagery for environmental monitoring and conservationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dib.2025.111419en_US
dc.identifier.scopus85219529961-
dc.identifier.isi001440573700001-
dc.contributor.orcid0009-0004-7543-3385-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-2882-4469-
dc.contributor.orcid0000-0002-2834-2067-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.authorscopusid58745737800-
dc.contributor.authorscopusid57271771200-
dc.contributor.authorscopusid7801555566-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid57218418238-
dc.identifier.eissn2352-3409-
dc.description.lastpage9en_US
dc.description.firstpage1en_US
dc.relation.volume59en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Salas-Cáceres, J-
dc.contributor.wosstandardWOS:Balia, R-
dc.contributor.wosstandardWOS:Salas-Pascual, M-
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J-
dc.contributor.wosstandardWOS:Castrillón-Santana, M-
dc.date.coverdateAbril 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,208-
dc.description.sjrqQ3-
dc.description.esciESCI-
dc.description.miaricds9,3-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR IUNAT: Biología Integrativa y Recursos Biológicos-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0009-0004-7543-3385-
crisitem.author.orcid0000-0003-2882-4469-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSalas Cáceres, José Ignacio-
crisitem.author.fullNameSalas Pascual,Marcos-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
Unknown (1,45 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.