Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/136529
DC FieldValueLanguage
dc.contributor.authorManesh, Mohammad Hasan Khoshgoftaren_US
dc.contributor.authorDavadgaran, Soheilen_US
dc.contributor.authorRabeti, Seyed Alireza Mousavien_US
dc.contributor.authorBlanco Marigorta, Ana Maríaen_US
dc.date.accessioned2025-03-05T18:18:56Z-
dc.date.available2025-03-05T18:18:56Z-
dc.date.issued2025en_US
dc.identifier.issn0306-2619en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/136529-
dc.description.abstractThe increase in greenhouse gases in the world due to the use of fossil fuels and the risk of losing non-renewable resources are important factors in the expansion of renewable polygeneration systems. The current research focuses on integrating solar-biomass-wind renewable energies to produce power, process steam, and ammonia simultaneously. The general operation of the proposed system is that a syngas-solar hybrid boiler is used to produce steam at two low-pressure and medium-pressure levels. Medium-pressure steam has been used as the feed of gasification process unit along with air and municipal solid waste. The syngas produced from the gasification unit is used to supply boiler fuel and ammonia unit feed. Before the ammonia synthesis process, it is necessary to purify the feed syngas. In this regard, water gas shifting and CO2 capture units have been used for purification. Next, the purified syngas with nitrogen in the presence of ammonia synthesis reactors are converted to ammonia. The nitrogen feed needed by the unit is created through a cryogenic air separation unit that supplies its electricity from wind turbines. A part of the ammonia produced has been used to fuel the downstream power generation unit. The Brayton open cycle based on ammonia-hydrogen hybrid fuel uses the described ammonia stream. The hydrogen required by this unit is supplied from the wind PEM electrolyzer. Finally, supercritical carbon dioxide cycles and organic Rankine cycle have been used to recover heat output from the Brayton cycle. Geothermal energy has also been used to preheat the organic fluid entering the turbine to increase power. Energy, exergy, exergeoeconomic, and exergoenvironmental (4E) analyses, along with sensitivity analysis and multi-objective optimization using the dragonfly algorithm, were performed. The overall energy efficiency, exergy efficiency, total cost rate, and environmental impact rate were 31.33 %, 38.53 %, 1.56 $/s, and 14.77 mPts/s, respectively. Three-objective optimization improved energy efficiency by 1.72 % and reduced the total cost rate by 15.86 %. In optimal operation, the system produces 275.44 tons/day of ammonia, 3.17 kg/s of steam, and 18.51 MW of power. The payback period was calculated to be 3.29 years, but in real-world scenarios, it may be longer, so the result should be interpreted cautiously.en_US
dc.languageengen_US
dc.relation.ispartofApplied Energyen_US
dc.sourceApplied Energy [ISSN 0306-2619],v. 384, p. 1-26en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject.otherSupercritical Co2en_US
dc.subject.otherEnergy-Conversionen_US
dc.subject.otherGas-Turbineen_US
dc.subject.otherExergoenvironmental Analysesen_US
dc.subject.otherMultiobjective Optimizationen_US
dc.subject.otherExergoeconomic Analysisen_US
dc.subject.otherMultigeneration Systemen_US
dc.subject.otherEnvironmental-Impacten_US
dc.subject.otherPower-Planten_US
dc.subject.otherFresh-Wateren_US
dc.subject.other4E Analysisen_US
dc.subject.otherPolygenerationen_US
dc.subject.otherOptimizationen_US
dc.subject.otherSolar-Biomass-Winden_US
dc.subject.otherAmmoniaen_US
dc.titleFeasibility study of green ammonia and electricity production via an innovative wind-solar-biomass polygeneration systemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apenergy.2025.125467en_US
dc.identifier.isi001427698900001-
dc.identifier.eissn1872-9118-
dc.description.lastpage26en_US
dc.description.firstpage1en_US
dc.relation.volume384en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages26en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Manesh, MHK-
dc.contributor.wosstandardWOS:Davadgaran, S-
dc.contributor.wosstandardWOS:Rabeti, SAM-
dc.contributor.wosstandardWOS:Blanco-Marigorta, AM-
dc.date.coverdateAbril 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr2,82
dc.description.jcr10,1
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Appears in Collections:Artículos
Adobe PDF (12,92 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.