Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/136517
Título: | Detecting short-notice cancellation in hotels with machine learning † | Autores/as: | Caballero Sanchez,Eleazar Sánchez Medina, Agustín Jesús |
Clasificación UNESCO: | 5311 Organización y dirección de empresas 531290 Economía sectorial: turismo |
Palabras clave: | Decision Tree Algorithm Fuzzy C-Means Clustering Hotel Cancellation Forecast Machine Learning Random Forest |
Fecha de publicación: | 2024 | Publicación seriada: | Engineering Proceedings | Resumen: | Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought innovative approaches to this domain, but short-notice cancellation prediction is still underdeveloped. Using real PNR data with more than 10k reservations provided by a four-star hotel, this research aims to combine fuzzy clustering with tree decision techniques and random forest under R software version 4.3.3 to forecast cancellations placed close to the entry day, slightly improving the performance of individual techniques. | URI: | http://hdl.handle.net/10553/136517 | DOI: | 10.3390/engproc2024068043 | Fuente: | Engineering Proceedings[EISSN 2673-4591],v. 68 (1), (Enero 2024) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.