Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136517
Título: Detecting short-notice cancellation in hotels with machine learning †
Autores/as: Caballero Sanchez,Eleazar 
Sánchez Medina, Agustín Jesús 
Clasificación UNESCO: 5311 Organización y dirección de empresas
531290 Economía sectorial: turismo
Palabras clave: Decision Tree Algorithm
Fuzzy C-Means Clustering
Hotel Cancellation Forecast
Machine Learning
Random Forest
Fecha de publicación: 2024
Publicación seriada: Engineering Proceedings 
Resumen: Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought innovative approaches to this domain, but short-notice cancellation prediction is still underdeveloped. Using real PNR data with more than 10k reservations provided by a four-star hotel, this research aims to combine fuzzy clustering with tree decision techniques and random forest under R software version 4.3.3 to forecast cancellations placed close to the entry day, slightly improving the performance of individual techniques.
URI: http://hdl.handle.net/10553/136517
DOI: 10.3390/engproc2024068043
Fuente: Engineering Proceedings[EISSN 2673-4591],v. 68 (1), (Enero 2024)
Colección:Artículos
Adobe PDF (254,57 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.