Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/136517
Title: Detecting short-notice cancellation in hotels with machine learning †
Authors: Caballero Sanchez,Eleazar 
Sánchez Medina, Agustín Jesús 
UNESCO Clasification: 5311 Organización y dirección de empresas
531290 Economía sectorial: turismo
Keywords: Decision Tree Algorithm
Fuzzy C-Means Clustering
Hotel Cancellation Forecast
Machine Learning
Random Forest
Issue Date: 2024
Journal: Engineering Proceedings 
Abstract: Cancellations play a critical role in the lodging industry. Considering the time horizon, cancellations placed close to check-in have a significant impact on hoteliers, who must respond promptly for effective management. In recent years, the introduction of personal name records (PNR) has brought innovative approaches to this domain, but short-notice cancellation prediction is still underdeveloped. Using real PNR data with more than 10k reservations provided by a four-star hotel, this research aims to combine fuzzy clustering with tree decision techniques and random forest under R software version 4.3.3 to forecast cancellations placed close to the entry day, slightly improving the performance of individual techniques.
URI: http://hdl.handle.net/10553/136517
DOI: 10.3390/engproc2024068043
Source: Engineering Proceedings[EISSN 2673-4591],v. 68 (1), (Enero 2024)
Appears in Collections:Artículos
Adobe PDF (254,57 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.