Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/136244
DC FieldValueLanguage
dc.contributor.authorVistorte, Alejandroen_US
dc.contributor.authorCompanioni, Adrianaen_US
dc.contributor.authorHernández, Fidelen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2025-02-17T08:23:37Z-
dc.date.available2025-02-17T08:23:37Z-
dc.date.issued2024en_US
dc.identifier.isbn9783031717727en_US
dc.identifier.issn1876-1100en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/136244-
dc.description.abstractThis work was focused on developing a low-cost, effective and reliable algorithm to be applied on fall detection through the analysis of data provided by an Inertial Measurement Unit attached at the head. In order to achieve this goal, trends of the acceleration vector variance were analyzed for the case of fall and no fall conditions, and such a feature, together with the time at which this feature remained above certain threshold, were the key points used for assessing whether a fall had happened or not. A public dataset, which included different types of falls and daily activities, was used for algorithm validation. The algorithm parameters (thresholds) were adjusted to achieve the highest Recall value. Accordingly, values of Precision, Recall, Specificity and Accuracy equal to 92.8%, 98.7%, 90.4%, and 95.0%, respectively, were obtained.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Electrical Engineeringen_US
dc.sourceLecture Notes in Electrical Engineering[ISSN 1876-1100],v. 117 LNEE, p. 3-12, (Enero 2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherFall Detectionen_US
dc.subject.otherImuen_US
dc.subject.otherThresholdsen_US
dc.subject.otherVarianceen_US
dc.titleThreshold-Based Algorithm for Fall Detection Through an Inertial Sensor Fixed at the Headen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference8th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, CITISIA 2023en_US
dc.identifier.doi10.1007/978-3-031-71773-4_1en_US
dc.identifier.scopus85215696694-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid59523355700-
dc.contributor.authorscopusid59522909200-
dc.contributor.authorscopusid59523130000-
dc.contributor.authorscopusid59523355800-
dc.identifier.eissn1876-1119-
dc.description.lastpage12en_US
dc.description.firstpage3en_US
dc.relation.volume117 LNEEen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents155625-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,147
dc.description.sjrqQ4
dc.description.miaricds9,6
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.event.eventsstartdate16-05-2024-
crisitem.event.eventsenddate17-05-2024-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.