Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136244
Título: Threshold-Based Algorithm for Fall Detection Through an Inertial Sensor Fixed at the Head
Autores/as: Vistorte, Alejandro
Companioni, Adriana
Hernández, Fidel
Travieso, Carlos M. 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Fall Detection
Imu
Thresholds
Variance
Fecha de publicación: 2024
Publicación seriada: Lecture Notes in Electrical Engineering 
Conferencia: 8th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, CITISIA 2023 
Resumen: This work was focused on developing a low-cost, effective and reliable algorithm to be applied on fall detection through the analysis of data provided by an Inertial Measurement Unit attached at the head. In order to achieve this goal, trends of the acceleration vector variance were analyzed for the case of fall and no fall conditions, and such a feature, together with the time at which this feature remained above certain threshold, were the key points used for assessing whether a fall had happened or not. A public dataset, which included different types of falls and daily activities, was used for algorithm validation. The algorithm parameters (thresholds) were adjusted to achieve the highest Recall value. Accordingly, values of Precision, Recall, Specificity and Accuracy equal to 92.8%, 98.7%, 90.4%, and 95.0%, respectively, were obtained.
URI: http://hdl.handle.net/10553/136244
ISBN: 9783031717727
ISSN: 1876-1100
DOI: 10.1007/978-3-031-71773-4_1
Fuente: Lecture Notes in Electrical Engineering[ISSN 1876-1100],v. 117 LNEE, p. 3-12, (Enero 2024)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.