Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136117
Título: Processability and properties of cubic-BaTiO<inf>3</inf>/poly(vinylidene fluoride) composites for additive manufacturing: From powder compounding to 3D-printed parts
Autores/as: Moriche Tirado,Rocío 
Donate González, Ricardo 
Otero, Andrea
Santiago Andrades, Lucía
Monzón Soto, Elena 
Sayagués De Vega,María Jesús 
Monzón Verona, Mario Domingo 
Paz Hernández, Rubén 
Clasificación UNESCO: 331210 Plásticos
3313 Tecnología e ingeniería mecánicas
Palabras clave: Additive manufacturing
Barium titanate
Filament extrusion
Material extrusion (MEX)
PVDF
Fecha de publicación: 2024
Proyectos: Nuevos scaffolds piezoeléctricos de compuestos nanoestructurados para la regeneración ósea mediante fabricación aditiva (PIZAM)
Publicación seriada: Polymer Composites 
Resumen: Poly(vinylidene fluoride) (PVDF) is a piezoelectric and thermoplastic material with great potential for additive manufacturing (AM) applications. Using barium titanate (BaTiO3) as filler, PVDF-based composite materials were developed, characterized, and processed by AM material extrusion (MEX). The morphological features and phase transformations occurring throughout the processing of BaTiO3-filled PVDF, from the compounding to the printed part, were analyzed. The morphology of the powder feedstock after dispersion in a high-energy ball mill changed from spheroidal to laminar and β-phase formation was favored. Microhardness gradually increased with the BaTiO3 content, obtaining an enhancement of ~60% for a content of 25 vol%, and supported the good dispersion of the filler. A ~48% increase of the dielectric permittivity was also achieved. After extrusion, filaments with a filler content of 15 vol% showed a more stable diameter, as well as higher crystallinity and surface roughness, compared with those with lower BaTiO3 contents. Material extrusion of filament and direct printing of pellets based on MEX were successfully used to obtain AM parts. Composite parts showed enhanced surface roughness, hydrophilicity, and flexural modulus (up to ~33% for the 7 vol% composite compared with the PVDF), thus leading to superior mechanical characteristics and potential biomedical applications. Highlights: Dry high-energy ball milling was a suitable greener dispersion approach. MEX processes were successfully used to obtain 3D-printed parts. The use of direct printing of pellets/powder improved the 3D printability. The surface roughness and hydrophilicity increased with the filler content. The permittivity and elastic modulus increased with the filler content.
URI: http://hdl.handle.net/10553/136117
ISSN: 0272-8397
DOI: 10.1002/pc.29434
Fuente: Polymer Composites [ISSN 0272-8397], p. 1-16
Colección:Artículos
Adobe PDF (9,37 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.