Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/136117
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Moriche Tirado,Rocío | en_US |
dc.contributor.author | Donate González, Ricardo | en_US |
dc.contributor.author | Otero, Andrea | en_US |
dc.contributor.author | Santiago Andrades, Lucía | en_US |
dc.contributor.author | Monzón Soto, Elena | en_US |
dc.contributor.author | Sayagués De Vega,María Jesús | en_US |
dc.contributor.author | Monzón Verona, Mario Domingo | en_US |
dc.contributor.author | Paz Hernández, Rubén | en_US |
dc.date.accessioned | 2025-02-12T16:31:37Z | - |
dc.date.available | 2025-02-12T16:31:37Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 0272-8397 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/136117 | - |
dc.description.abstract | Poly(vinylidene fluoride) (PVDF) is a piezoelectric and thermoplastic material with great potential for additive manufacturing (AM) applications. Using barium titanate (BaTiO3) as filler, PVDF-based composite materials were developed, characterized, and processed by AM material extrusion (MEX). The morphological features and phase transformations occurring throughout the processing of BaTiO3-filled PVDF, from the compounding to the printed part, were analyzed. The morphology of the powder feedstock after dispersion in a high-energy ball mill changed from spheroidal to laminar and β-phase formation was favored. Microhardness gradually increased with the BaTiO3 content, obtaining an enhancement of ~60% for a content of 25 vol%, and supported the good dispersion of the filler. A ~48% increase of the dielectric permittivity was also achieved. After extrusion, filaments with a filler content of 15 vol% showed a more stable diameter, as well as higher crystallinity and surface roughness, compared with those with lower BaTiO3 contents. Material extrusion of filament and direct printing of pellets based on MEX were successfully used to obtain AM parts. Composite parts showed enhanced surface roughness, hydrophilicity, and flexural modulus (up to ~33% for the 7 vol% composite compared with the PVDF), thus leading to superior mechanical characteristics and potential biomedical applications. Highlights: Dry high-energy ball milling was a suitable greener dispersion approach. MEX processes were successfully used to obtain 3D-printed parts. The use of direct printing of pellets/powder improved the 3D printability. The surface roughness and hydrophilicity increased with the filler content. The permittivity and elastic modulus increased with the filler content. | en_US |
dc.language | eng | en_US |
dc.relation | Nuevos scaffolds piezoeléctricos de compuestos nanoestructurados para la regeneración ósea mediante fabricación aditiva (PIZAM) | en_US |
dc.relation.ispartof | Polymer Composites | en_US |
dc.source | Polymer Composites [ISSN 0272-8397], p. 1-16 | en_US |
dc.subject | 331210 Plásticos | en_US |
dc.subject | 3313 Tecnología e ingeniería mecánicas | en_US |
dc.subject.other | Additive manufacturing | en_US |
dc.subject.other | Barium titanate | en_US |
dc.subject.other | Filament extrusion | en_US |
dc.subject.other | Material extrusion (MEX) | en_US |
dc.subject.other | PVDF | en_US |
dc.title | Processability and properties of cubic-BaTiO<inf>3</inf>/poly(vinylidene fluoride) composites for additive manufacturing: From powder compounding to 3D-printed parts | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/pc.29434 | en_US |
dc.identifier.scopus | 2-s2.0-85213694936 | - |
dc.contributor.orcid | 0000-0002-8392-6647 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.description.lastpage | 16 | en_US |
dc.description.firstpage | 1 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 16 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,795 | |
dc.description.jcr | 5,2 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 11,0 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR Fabricación integrada y avanzada | - |
crisitem.author.dept | Departamento de Ingeniería de Procesos | - |
crisitem.author.dept | GIR Fabricación integrada y avanzada | - |
crisitem.author.dept | GIR Fabricación integrada y avanzada | - |
crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
crisitem.author.dept | GIR Fabricación integrada y avanzada | - |
crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
crisitem.author.orcid | 0000-0002-4337-5991 | - |
crisitem.author.orcid | 0000-0003-2736-7905 | - |
crisitem.author.orcid | 0000-0003-1223-7067 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Moriche Tirado,Rocío | - |
crisitem.author.fullName | Donate González, Ricardo | - |
crisitem.author.fullName | Monzón Soto, Elena | - |
crisitem.author.fullName | Sayagués De Vega,María Jesús | - |
crisitem.author.fullName | Monzón Verona, Mario Domingo | - |
crisitem.author.fullName | Paz Hernández, Rubén | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.