Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136117
Campo DC Valoridioma
dc.contributor.authorMoriche Tirado,Rocíoen_US
dc.contributor.authorDonate González, Ricardoen_US
dc.contributor.authorOtero, Andreaen_US
dc.contributor.authorSantiago Andrades, Lucíaen_US
dc.contributor.authorMonzón Soto, Elenaen_US
dc.contributor.authorSayagués De Vega,María Jesúsen_US
dc.contributor.authorMonzón Verona, Mario Domingoen_US
dc.contributor.authorPaz Hernández, Rubénen_US
dc.date.accessioned2025-02-12T16:31:37Z-
dc.date.available2025-02-12T16:31:37Z-
dc.date.issued2024en_US
dc.identifier.issn0272-8397en_US
dc.identifier.urihttp://hdl.handle.net/10553/136117-
dc.description.abstractPoly(vinylidene fluoride) (PVDF) is a piezoelectric and thermoplastic material with great potential for additive manufacturing (AM) applications. Using barium titanate (BaTiO3) as filler, PVDF-based composite materials were developed, characterized, and processed by AM material extrusion (MEX). The morphological features and phase transformations occurring throughout the processing of BaTiO3-filled PVDF, from the compounding to the printed part, were analyzed. The morphology of the powder feedstock after dispersion in a high-energy ball mill changed from spheroidal to laminar and β-phase formation was favored. Microhardness gradually increased with the BaTiO3 content, obtaining an enhancement of ~60% for a content of 25 vol%, and supported the good dispersion of the filler. A ~48% increase of the dielectric permittivity was also achieved. After extrusion, filaments with a filler content of 15 vol% showed a more stable diameter, as well as higher crystallinity and surface roughness, compared with those with lower BaTiO3 contents. Material extrusion of filament and direct printing of pellets based on MEX were successfully used to obtain AM parts. Composite parts showed enhanced surface roughness, hydrophilicity, and flexural modulus (up to ~33% for the 7 vol% composite compared with the PVDF), thus leading to superior mechanical characteristics and potential biomedical applications. Highlights: Dry high-energy ball milling was a suitable greener dispersion approach. MEX processes were successfully used to obtain 3D-printed parts. The use of direct printing of pellets/powder improved the 3D printability. The surface roughness and hydrophilicity increased with the filler content. The permittivity and elastic modulus increased with the filler content.en_US
dc.languageengen_US
dc.relationNuevos scaffolds piezoeléctricos de compuestos nanoestructurados para la regeneración ósea mediante fabricación aditiva (PIZAM)en_US
dc.relation.ispartofPolymer Compositesen_US
dc.sourcePolymer Composites [ISSN 0272-8397], p. 1-16en_US
dc.subject331210 Plásticosen_US
dc.subject3313 Tecnología e ingeniería mecánicasen_US
dc.subject.otherAdditive manufacturingen_US
dc.subject.otherBarium titanateen_US
dc.subject.otherFilament extrusionen_US
dc.subject.otherMaterial extrusion (MEX)en_US
dc.subject.otherPVDFen_US
dc.titleProcessability and properties of cubic-BaTiO<inf>3</inf>/poly(vinylidene fluoride) composites for additive manufacturing: From powder compounding to 3D-printed partsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/pc.29434en_US
dc.identifier.scopus2-s2.0-85213694936-
dc.contributor.orcid0000-0002-8392-6647-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage16en_US
dc.description.firstpage1en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,795
dc.description.jcr5,2
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-4337-5991-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.orcid0000-0003-1223-7067-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameMoriche Tirado,Rocío-
crisitem.author.fullNameDonate González, Ricardo-
crisitem.author.fullNameMonzón Soto, Elena-
crisitem.author.fullNameSayagués De Vega,María Jesús-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
crisitem.author.fullNamePaz Hernández, Rubén-
Colección:Artículos
Adobe PDF (9,37 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.