Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135724
Título: Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection
Autores/as: León Martín,Sonia Raquel 
Fabelo Gómez, Himar Antonio 
Ortega Sarmiento,Samuel 
Cruz-Guerrero, Ines A.
Campos Delgado, Daniel Ulises 
Zbigniew Szolna,Adam 
Piñeiro, Juan F.
Espino, Carlos
O’Shanahan, Aruma J.
Hernandez, Maria
Carrera, David
Bisshopp Alfonso, Sara 
Sosa, Coralia
Balea-Fernandez, Francisco J.
Morera, Jesus
Clavo Varas,Bernardino 
Marrero Callicó, Gustavo Iván 
Fecha de publicación: 2023
Proyectos: Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial 
Publicación seriada: npj Precision Oncology
Resumen: Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.
URI: http://hdl.handle.net/10553/135724
ISSN: 2397-768X
DOI: 10.1038/s41698-023-00475-9
Colección:Artículos
Adobe PDF (13,24 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.