Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/135724
Title: Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection
Authors: León Martín,Sonia Raquel 
Fabelo Gómez, Himar Antonio 
Ortega Sarmiento,Samuel 
Cruz-Guerrero, Ines A.
Campos Delgado, Daniel Ulises 
Zbigniew Szolna,Adam 
Piñeiro, Juan F.
Espino, Carlos
O’Shanahan, Aruma J.
Hernandez, Maria
Carrera, David
Bisshopp Alfonso, Sara 
Sosa, Coralia
Balea-Fernandez, Francisco J.
Morera, Jesus
Clavo Varas,Bernardino 
Marrero Callicó, Gustavo Iván 
Issue Date: 2023
Project: Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial 
Journal: npj Precision Oncology
Abstract: Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.
URI: http://hdl.handle.net/10553/135724
ISSN: 2397-768X
DOI: 10.1038/s41698-023-00475-9
Appears in Collections:Artículos
Adobe PDF (13,24 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.