Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135687
Campo DC Valoridioma
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorNeves, Joaoen_US
dc.contributor.authorEmeršič, Žigaen_US
dc.contributor.authorMeden, Blažen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.contributor.authorProença, Hugoen_US
dc.date.accessioned2025-01-28T14:09:56Z-
dc.date.available2025-01-28T14:09:56Z-
dc.date.issued2025en_US
dc.identifier.issn0262-8856en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/135687-
dc.description.abstractSketch understanding poses unique challenges for general-purpose vision algorithms due to the sparse and semantically ambiguous nature of sketches. This paper introduces a novel approach to biometric recognition that leverages sketch-based representations of ears, a largely unexplored but promising area in biometric research. Specifically, we address the “sketch-2-image” matching problem by synthesizing ear sketches at multiple abstraction levels, achieved through a triplet-loss function adapted to integrate these levels. The abstraction level is determined by the number of strokes used, with fewer strokes reflecting higher abstraction. Our methodology combines sketch representations across abstraction levels to improve robustness and generalizability in matching. Extensive evaluations were conducted on four ear datasets (AMI, AWE, IITDII, and BIPLab) using various pre-trained neural network backbones, showing consistently superior performance over state-of-the-art methods. These results highlight the potential of ear sketch-based recognition, with cross-dataset tests confirming its adaptability to real-world conditions and suggesting applicability beyond ear biometrics.en_US
dc.languagespaen_US
dc.relationPID2021-122402OB-C22en_US
dc.relation.ispartofImage and Vision Computingen_US
dc.sourceImage and Vision Computing[ISSN 0262-8856],v. 154, (Febrero 2025)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherCross-Dataset Generalizabilityen_US
dc.subject.otherEar Biometricsen_US
dc.subject.otherSketch-Based Identificationen_US
dc.subject.otherTriplet-Loss Functionen_US
dc.titleSynthesizing multilevel abstraction ear sketches for enhanced biometric recognitionen_US
dc.typeArticleen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.identifier.doi10.1016/j.imavis.2025.105424en_US
dc.identifier.scopus85215438198-
dc.contributor.orcid0000-0003-2378-4277-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid57197639019-
dc.contributor.authorscopusid56097253100-
dc.contributor.authorscopusid57191976811-
dc.contributor.authorscopusid57218418238-
dc.contributor.authorscopusid14016540600-
dc.relation.volume154en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateFebrero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,204
dc.description.jcr4,7
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
Adobe PDF (1,6 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.