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A B S T R A C T

Sketch understanding poses unique challenges for general-purpose vision algorithms due to the sparse and
semantically ambiguous nature of sketches. This paper introduces a novel approach to biometric recognition
that leverages sketch-based representations of ears, a largely unexplored but promising area in biometric
research. Specifically, we address the ‘‘sketch-2-image’’ matching problem by synthesizing ear sketches at
multiple abstraction levels, achieved through a triplet-loss function adapted to integrate these levels. The
abstraction level is determined by the number of strokes used, with fewer strokes reflecting higher abstraction.
Our methodology combines sketch representations across abstraction levels to improve robustness and
generalizability in matching. Extensive evaluations were conducted on four ear datasets (AMI, AWE, IITDII, and
BIPLab) using various pre-trained neural network backbones, showing consistently superior performance over
state-of-the-art methods. These results highlight the potential of ear sketch-based recognition, with cross-dataset
tests confirming its adaptability to real-world conditions and suggesting applicability beyond ear biometrics.
1. Introduction

Facial recognition technology has become an invaluable asset for
law enforcement agencies, offering significant assistance in forensic in-
vestigations [1]. Nevertheless, obtaining direct photographs of suspects
might not always be possible in forensic settings. In such cases, the
assistance of eyewitnesses or victims becomes invaluable, as they can
help in generating a facial sketch. Although these sketches provide an
approximate representation of the suspect’s identity, they have a crucial
role in narrowing down the list of potential suspects by facilitating
searches within the mugshot database.

Facial sketches are mainly divided into two distinct categories [2]:
composite and hand-drawn. Composite sketches are produced using
specialized software, and offer a streamlined and technologically driven
approach. Conversely, hand-drawn sketches yield from proficient foren-
sic artists, which requires significant training and expertise. This kind of
methods relies on the artist’s ability to translate eyewitness descriptions
into accurate visual representations.

Contrary to popular belief, police sketch artists often create multiple
sketches of suspects, not just from one point of view or in a single
style [3–5]. The variety in sketch representations, including side-view
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sketches, is essential for comprehensively illustrating a suspect’s fea-
tures. While frontal sketches highlight the face’s direct features, side
views reveal crucial angular details like ear shape, jawline, and nose
shape, offering a complete profile that enhances the likelihood of iden-
tification. Side-view sketches are invaluable in criminal investigations,
especially in the age of ubiquitous surveillance. CCTV often captures
profiles, not frontals, making these sketches align well with footage,
thereby boosting law enforcement’s ability to match suspects.

Significant efforts have been directed towards addressing the com-
plexities of frontal face sketch recognition [6–9]. Although sketches
might appear similar to photographs at first glance, discernible distinc-
tions between the two remain prevalent. Such differences are mainly
attributable to the challenges in accurately recalling and rendering
a face from memory, a phenomenon acknowledged as the modality
gap. This gap underscores a crucial obstacle that impacts the accuracy
of sophisticated face recognition algorithms, especially in contexts
requiring cross-modal comparisons between sketches and photographic
images [10,11]. In response, some researchers advocate for the adop-
tion of component-based strategies in facial sketch recognition like
eyes, nose, mouth, and forehead [12–14]. However, these methodolo-
gies have predominantly focused on frontal facial sketches, neglecting
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Fig. 1. Proposed multi-abstraction sketch-ear recognition scheme. Left: generating
sketches across various abstraction levels involves creating representations with varying
levels of detail, encompassing stroke counts from 16, 32, 64, 128, down to 256 shown
in the figure from top to bottom. It is important to note that strokes are not cumulative;
higher-level syntheses do not include strokes repeated in lower-level syntheses. Right:
the original photos (the sketched photo is removed from the set). Bottom right: the
proposed pipeline to efficiently recognize a subject in a single forward pass.

the potential of ears. In this work, we focus on exploring ear sketches,
motivated by the ear’s intricate and individual-specific structure, which
remains consistent over time, offering a distinctive and reliable marker
for suspect identification [15].

We meticulously processed four distinguished ear datasets (AMI,
AWE, IITDII, and BIPLab), each characterized by its unique acquisition
procedure, thus expanding the scope of our research. We transformed
each dataset into multiple abstracted versions using different numbers
of strokes (16, 32, 64, 128, and 256) for sketching (see Fig. 1). Utilizing
these abstracted versions alongside the original RGB data, we assessed
various pre-trained models to enhance a multi-input triplet-loss func-
tion, with each input fine-tuning the embedding generator at distinct
abstraction levels. This method stands out for its ability to leverage
insights from each abstraction level, enhancing the accuracy and ef-
fectiveness of recognition tasks. Our contributions can be outlined as
follows:

• We have implemented the approach to analyze lateral view com-
ponents of the face, such as ears, which have received limited at-
tention in the literature. This aspect is particularly significant be-
cause lateral views provide distinctive biometric features that can
improve recognition systems’ overall accuracy and robustness.

• We have expanded the ear datasets mentioned by generating their
sketched versions with CLIPasso [16], which converts an image
of an object to a sketch, allowing for varying levels of abstraction
while preserving its key visual features.

• We adapted the triplet-loss function to integrate multiple abstrac-
tion levels, showcasing its enhanced performance over traditional
baselines and when abstraction levels are considered in isolation.
This is significant as it leverages the composite strengths of var-
ious abstract representations, yielding more refined and accurate
recognition capabilities.

• In the scope of this study, we perform an exhaustive compar-
ative analysis of various backbones in our proposed pipeline,
evaluating their efficacy in sketch-based ear recognition.

• We conducted cross-dataset experiments to evaluate the general-
izability of our approach, training on a combination of datasets
while testing on a distinct one. This setup simulates real-world
scenarios where models encounter unseen data distributions, re-
vealing the robustness and adaptability of our method compared
to baselines.
2 
2. Related work

Sketch Synthesis. Facial sketch recognition approaches can be
broadly categorized into generative and discriminative approaches [8].
Generative approaches learn a modality transfer function to ensure
matching is carried out in the same modality [17,18]. In contrast,
discriminative approaches focus on feature extraction such as scale-
invariant feature transform (SIFT) [19] or multiscale local binary pat-
tern (MLBP) [20]. However, the adequacy of these features for cross-
modal recognition tasks often needs to be improved [21], leading to
a pivot towards techniques that ascertain or learn features invariant
across modalities [7,22].

Significant advances have been made in face sketch recognition in
recent years, with early methods leveraging deep learning for enhanced
accuracy. Mittal et al. [23] introduced a transfer learning strategy by
training a deep network trained on a large number of photos, and
subsequently training it with a reduced amount of sketch-photo pairs
bridging the gap created by the scarcity of extensive sketch-photo
datasets. On another research line, pre-trained face recognition models
were used to identify sketches, by extracting features from intermediate
layers and adopting a simple metric learning approach rather than com-
prehensive model fine-tuning, yielding results comparable or superior
to previous methods [11].

Ear Recognition. Considering the existing body of work in facial
sketch recognition, it is intriguing to consider the unexplored potential
of applying these methodologies to ear sketches. To the best of our
knowledge, ear sketches have not been addressed explicitly in the
literature, representing a novel avenue for research. Ears, with their
unique and complex structures, offer a distinctive biometric feature that
remains consistent over time, much like fingerprints. This consistency
and the distinctiveness of ear shapes and features make ear sketches an
interesting and potentially fruitful focus for sketch recognition efforts.
In this regard, ears have shown a remarkable recognition performance
over the past two decades. Since the pioneering work in which fa-
cial and ear eigenvectors were combined to boost performance over
individual biometrics [24], several authors have considered the ear
as a biometric trait. Over time, numerous studies have addressed ear
recognition, even under unconstrained conditions [25]. Initially, the
focus was on 2D ear images, and a survey categorized recognition
techniques into geometric, holistic, local, and hybrid methods [26].
Geometric methods leverage the ear’s geometric features [27], while
holistic strategies view the ear entirely, extracting global property
features, like the force fields method [28]. Local methods focus on
extracting features from specific image regions for recognition [29],
and hybrid methods blend elements from the approaches mentioned
above [30]. Similar to the advancements in facial sketch recogni-
tion, recent studies have showcased the transformative capabilities of
deep learning [31,32], outperforming traditional methods reliant on
manually engineered features [30,33].

In this work, we aim to bridge the gap in the existing literature
by focusing on ear sketches and their recognition on real images, an
area that has yet to be extensively explored. While the methodologies
for facial sketch recognition have matured, the unique contours and
features of the ear present different challenges and opportunities for
biometric recognition. Deep learning approaches, which have revolu-
tionized facial sketch recognition, also hold significant promise for ear
sketch recognition. By leveraging deep learning techniques and the rich
yet underexplored biometric information present in ear sketches, we
strive to develop robust recognition systems that accurately identify
individuals based on their ear sketches.

3. Methodology

3.1. Overview

Let 𝐼 be an image of an ear in a high-dimensional space R𝑛. We
consider a sketch 𝑆(𝐼) of the ear as a transformation of 𝐼 into a lower-
dimensional space R𝑚 (𝑚 < 𝑛), which captures the essential features of
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Fig. 2. Overview of the experimental workflow. The process begins with four datasets (AMI, AWE, IITDII, BIPLab) transformed into sketches with varying abstraction levels
using CLIPasso (16 to 256 strokes). The triplet-loss framework processes anchor sketches, positive, and negative samples to generate embeddings.
𝐼 while also considering the sketch as a set of strokes:

𝑆 ∶ R𝑛 → R𝑚, 𝑆(𝐼) =
𝑁
⋃

𝑖=1
𝑠𝑖 = 𝑔1(𝐼), 𝑔2(𝐼),… , 𝑔𝑚(𝐼), (1)

where 𝑆(𝐼) is the sketch representation of the ear image, 𝑠𝑖 represents
the 𝑖th stroke contributing to the sketch, and 𝑁 is the total number
of strokes. Note that this latter parameter is inversely related to the
abstraction level 𝐴 of the sketch, indicating that a higher number of
strokes (or features 𝑔𝑗) corresponds to a lower level of abstraction and
vice versa. Moreover, the features 𝑔𝑗 (𝐼) of each stroke 𝑠𝑖 are determined
based on visually salient and semantically meaningful components of
the image [16]. Each stroke’s parameters are optimized through an iter-
ative process that balances geometric coherence with semantic fidelity,
using control points to represent essential contours and shapes within a
lower-dimensional space. This approach ensures that the sketch retains
key visual characteristics of the original image while achieving the
desired level of abstraction. The concept of stroke-related abstraction
has recently been discussed in the literature, particularly in the image
retrieval domain [34].

Then, as shown in Fig. 2, we redefine the sketch representation 𝑆(𝐼)
of an ear image 𝐼 as the embeddings produced by pre-trained neural
networks, deviating from the traditional notion of sketches as sets of
strokes. We employ eight state-of-the-art backbones, namely VGG19,
ResNet152, Xception, InceptionV3, MobileNet, EfficientNetB7, Effi-
cientNetB0, and DenseNet121, each trained on the ImageNet dataset.
These networks, known for their distinct architectural features—from
VGG19’s deep convolutional layers to ResNet152’s skip connections,
and from the modular design of InceptionV3 and Xception to the
efficient and scalable architecture of EfficientNets—transform the high-
dimensional input image 𝑆(𝐼) in R𝑚 into a lower-dimensional, dense
embedding in R𝑝 (𝑚 <= 𝑝), capturing the essential features of the ear
sketch 𝑆(𝐼) defined in Eq. (1).

𝐵 ∶ R𝑚 → R𝑝, 𝐵(𝐼) = 𝑏(𝑆(𝐼)) ∈ R𝑝. (2)

Here, 𝐵 represents the backbone network that acts as a function
mapping the high-dimensional image to its embedding, providing a nu-
anced feature-rich representation. This interpretation of an ear sketch
as an embedding enables us to leverage the advanced feature extraction
capabilities developed through deep learning, offering a robust and dis-
criminative representation of ear images suitable for complex biometric
recognition tasks.

Finally, with a query ear sketch denoted as 𝑏(𝑆(𝐼)), and a collection
of 𝑀 candidate photos 𝑏(𝑐𝑗 )

𝑀
𝑗=1 within 𝐶, our goal is to evaluate the

similarity between 𝑏(𝑆(𝐼)) and 𝑏(𝑐) to rank the entire gallery of photos.
This prioritization aims to highlight the authentic match for the query
sketch. The task poses two primary challenges: (i) closing the domain
3 
gap between sketches and photos, and (ii) accurately distinguishing
subtle discrepancies among candidate photos to achieve precise ranking
despite the domain gap and the inherent variability of sketches. To
address these challenges, we propose employing a triplet network
model to acquire a domain-invariant representation 𝑓𝜃(⋅), where 𝜃
represents a configuration of abstraction levels. These levels can be
combinations such as 16, 16 ∪ 32, 16 ∪ 32 ∪ 64, etc., where ∪ signifies the
union of different abstraction levels considered in the architecture. This
representation simplifies the measurement of similarity between 𝑏(𝑆(𝐼))
and 𝑏(𝑐) ∈ 𝐶 using the Euclidean distance equation: 𝐷(𝑏(𝑆(𝐼)), 𝑏(𝐶)) =
‖𝑓𝜃(𝑏(𝑆(𝐼))) − 𝑓𝜃(𝑏(𝐶))‖22.

3.2. Sketch generation

Sketch generation was obtained using CLIPasso [16] for all the ear
datasets considered. Each sketch was carefully designed to consist of
16, 32, 64, 128, or 256 pen strokes. Unlike other studies, we opted
for a comparatively higher number of strokes, a decision influenced by
the demands of the recognition task [35]. The process employed by
CLIPasso involves adjusting the parameters of various curves, including
start/end points and control points. Each curve represents a single
pen stroke, and the adjustment is made to mimic the target image
accurately. To guide this adjustment process, we relied on a pre-
trained implementation of CLIP [16]. This model, developed through
contrastive learning on an extensive dataset of text-image pairs, pro-
vided valuable insights into achieving similarity between the generated
sketch and the target image. Similarity is determined based on the dis-
tance computed between CLIP’s embedding of the target image and the
embedding of the sketch. These embeddings capture a combination of
feature activations from multiple intermediate layers of CLIP, offering a
comprehensive representation of the visual and semantic characteristics
of both the target image and the generated sketch.

3.3. Multi-abstraction triplet loss

Our network architecture introduces a novel approach by employing
multiple modules within a single triplet framework, each module dedi-
cated to processing a sketch at a different level of abstraction. As shown
in Fig. 3, the framework comprises three branches: one for the query
sketch, processed through several modules to handle varying abstrac-
tion levels, and two additional branches for the positive and negative
photos, which remain consistent across all modules. This multi-module
strategy allows for generating multiple embeddings, one from each
module, which are then averaged to form a unified embedding used in
the triplet configuration. While innovative in our context, this method
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Fig. 3. Architecture of the proposed learning network. Our architecture integrates
multiple modules within a single triplet framework, processing anchor sketches at
varying levels of abstraction and ensuring consistency with positive and negative
images. The anchor is a sketched image of the same subject as the positive image
(but from a different photo), while the negative image represents a different subject.
All images are processed at the abstraction level corresponding to the anchor’s sketch,
with the resulting embeddings fed into the customized triplet loss function.

builds on the concept of utilizing sketch-photo combinations for im-
age retrieval, which has been previously explored [36,37]. However,
unlike traditional applications in face recognition, which are typically
confined to controlled datasets with high-quality sketches [38], our
approach extends to less constrained scenarios, ensuring robustness by
not using the photo that generated the sketch as a positive sample
within any of the modules.

The framework shown in Fig. 3 is designed to ensure that the photo
branches across all modules share weights, promoting consistency.
In contrast, the alignment of weights between the sketch and photo
branches depends on whether the module is Siamese or heteroge-
neous [37]. This distinction is essential given the significant differences
between sketch and photo domains, which underscore a machine modal-
ity gap. While heterogeneous modules are typically favored for distinct
domains like text and images [39], Siamese modules are preferred for
more closely related domains [40]. Previous studies have exploited het-
erogeneous modules for sketch-photo tasks [41]. However, later find-
ings suggest such configurations may not be ideal for detailed sketch-
based image tasks, especially with sparse training data [37]. Conse-
quently, to address the overfitting linked to sparse data, our method-
ology employs a distinct architecture where each embedding module
maintains internal parameter consistency but operates independently
without sharing parameters with other embedding modules.

In the context of the triplet loss for ear sketches, considering multi-
ple levels of abstraction, we define the triplet loss as follows. For each
anchor embedding 𝑎𝑖 in {𝑎1, 𝑎2,… , 𝑎𝑀}, where 𝑖 represents different
abstraction levels considered at a given configuration 𝜃, with positive
embedding 𝑝 and negative embedding 𝑛:

𝐿acc =
𝑀
∑

𝑖=1
max(‖𝑓𝑖(𝑎𝑖) − 𝑓𝑖(𝑝̂)‖2 − ‖𝑓𝑖(𝑎𝑖) − 𝑓𝑖(𝑛̂)‖2 + 𝛼 , 0), (3)

where: 𝑓𝑖(𝑎𝑖) = 𝑓𝑖(𝑏(𝑆(𝐼))) represents the 𝑖th new embedding of the
anchor sketch at an 𝑖 abstraction level. 𝑓𝑖(𝑝̂) = 𝑓𝑖(𝑏(𝑝)) is the 𝑖th new
embedding of the positive photo embedding, similar to the anchor.
𝑓𝑖(𝑛̂) = 𝑓𝑖(𝑏(𝑛)) represents the 𝑖th new embedding of the negative
photo embedding, dissimilar to the anchor and 𝛼 is the margin enforced
between positive and negative pairs.

This formulation enhances the recognition system’s robustness by
leveraging the intricate and unique features of ear sketches, considering
multiple perspectives or variations of the anchor derived from the levels
of abstraction in the sketch representation. Moreover, the architecture
of each branch to generate 𝑓 (𝑥) (see Fig. 3) consists of a neural module.
𝑖

4 
Each input vector (𝑎𝑖, 𝑝̂, and 𝑛̂) is fed into a dense layer with half
the number of units as the input length, utilizing Rectified Linear Unit
(ReLU) activation function, L2 kernel regularization with a coefficient
of 1 × 10−3, and He uniform initializer. Following the dense layer,
batch normalization is applied to normalize the activations, followed by
ReLU activation to introduce non-linearity. Dropout regularization with
a rate of 0.5 is applied to mitigate overfitting. Subsequently, another
dense layer with the same number of units as the previous one is
employed, with similar configurations of activation, regularization, and
initialization. After batch normalization, a third dense layer with the
same number of units is utilized, employing identical configurations.
Finally, the output layer consists of a dense layer with 512 units. This
layer does not have an activation function, and the kernel weights
are regularized using L2 regularization with a coefficient of 1 × 10−3
and initialized using the He uniform initializer. The output is then
normalized using L2 normalization along the last axis.

4. Experimental setup

Datasets. Ear datasets exhibit substantial diversity in their sources,
containing captured images and those obtained through web crawlers.
These datasets also vary regarding ear pose (frontal or profile), partici-
pant count, dataset size, ethnicity representation, and camera settings.
We have curated four datasets (AMI, IITDII, AWE, and BIPLab) to
encompass various acquisition process variations. AMI [42] consists
of 100 subjects, each with seven noiseless images. These images were
captured under fixed illumination conditions using a 135 mm and
200 mm focal length. While yaw poses show minimal variation, pitch
ranges notably from 40–45◦. IITD-II [43] is a collection of grayscale
images featuring 221 subjects captured under indoor lighting condi-
tions with a fixed camera position to maintain consistent profile angles.
All ear images are cropped, centered, and aligned, with images per
user ranging from 3 to 6 samples. The AWE dataset [26] pioneers the
concept of ear images captured in the wild by compiling images of 100
celebrities sourced from the internet under diverse conditions. Each
subject contributes ten images, with sizes ranging significantly from
15 × 29 pixels to 473 × 1022 pixels. More recently, BIPLab [33] intro-
duced a dataset comprising 300 images from 100 distinct participants.
Diverging from traditional collections, images were captured under
uncontrolled lighting and with a movable camera position. The dataset
aims to simulate the ear portion captured during phone calls, covering
approximately 90% of the image. Samples may exhibit blurring, with
minimal yaw and pitch variation in ear poses.

Data Augmentation. Some analyzed datasets provide only a small
number of samples per subject. For instance, the BIPLab dataset usually
contains just three images per subject. To overcome this limitation, a
data augmentation approach was implemented to expand the dataset,
resulting in a threefold increase in samples per subject. This aug-
mentation process involves diverse transformations, including random
adjustments in brightness and contrast, horizontal flipping, shifting,
scaling, and rotation [44]. It is worth noting that these augmented
subsets are exclusively used for training purposes.

Metrics. We have employed two evaluation metrics for our analysis.
Mean Average Precision (mAP) quantifies the average precision across
all potential rankings of the images. Specifically, mAP is computed
by determining each class’s average precision (AP) and subsequently
averaging these AP values across all classes. AP is the area under the
precision–recall curve (PR curve) corresponding to a given query im-
age. Additionally, we utilized the Cumulative Matching Characteristic
(CMC) curve. This metric assesses the percentage of correct matches at
each retrieved image rank. The CMC curve is constructed by computing
the percentage of correct matches for each rank and plotting these
results on a graph.

Implementation Details. In all our experiments, the initial learning
rate was set to 0.001, with a mini-batch size of 128. The margin
parameter 𝛼 was set to 0.2.
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Table 1
Mean average precision achieved by each backbone for the optimal abstraction level 𝜃 across different datasets: AMI and BIPLab with 64∪128∪256.

Encoding Dataset: AMI Dataset: BIPLab

mAP↑ Rank-1↑ Rank-5↑ Rank-10↑ mAP↑ Rank-1↑ Rank-5↑ Rank-10↑

LBPbase 16.2% 4.3% 24.0% 45.6% 15.8% 5.3% 23.3% 42.0%
Backbonebase 17.8% 6.3% 24.7% 46.0% 18.0% 6.3% 24.6% 47.6%

O
ur

s

VGG19 31.2% 16.1% 46.2% 69.1% 29.0% 15.0% 44.1% 69.0%
ResNet152 35.9% 20.1% 51.2% 75.0% 32.2% 16.0% 45.1% 69.0%
InceptionV3 31.7% 17.0% 48.1% 68.1% 29.7% 16.0% 38.2% 61.0%
Xception 32.3% 18.0% 45.0% 67.1% 27.3% 14.0% 42.0% 59.1%
DenseNet121 40.6% 24.2% 64.7% 81.3% 39.2% 23.0% 60.3% 78.1%
EfficientNetB0 39.2% 23.0% 55.0% 78.0% 30.8% 14.5% 42.0% 69.0%
EfficientNetB7 35.3% 20.4% 53.3% 73.1% 37.4% 20.0% 54.4% 71.1%
MobileNet 36.5% 23.3% 48.2% 67.0% 30.7% 14.1% 45.2% 75.1%
Table 2
Mean average precision achieved by each backbone for the optimal abstraction level 𝜃 across different datasets: AWE and IITDII with 16∪32 ∪ 64 ∪ 128∪256.

Encoding Dataset: AWE Dataset: IITDII

mAP↑ Rank-1↑ Rank-5↑ Rank-10↑ mAP↑ Rank-1↑ Rank-5↑ Rank-10↑

LBPbase 16.2% 4.3% 24.0% 45.6% 15.8% 5.3% 23.3% 42.0%
Backbonebase 17.8% 6.3% 24.7% 46.0% 18.0% 6.3% 24.6% 47.6%

O
ur

s

VGG19 27.6% 13.0% 39.2% 66.1% 24.7% 10.5% 40.0% 60.9%
ResNet152 27.8% 12.0% 40.1% 59.1% 26.2% 11.8% 41.4% 58.2%
InceptionV3 24.9% 12.0% 35.1% 57.1% 23.7% 11.8% 33.2% 51.4%
Xception 27.0% 14.0% 36.1% 58.0% 25.6% 12.7% 37.7% 56.8%
DenseNet121 33.8% 20.3% 46.2% 67.3% 33.8% 20.0% 51.4% 69.1%
EfficientNetB0 27.6% 11.1% 43.1% 66.0% 27.0% 14.5% 38.6% 54.1%
EfficientNetB7 28.4% 16.1% 38.2% 58.1% 29.0% 15.0% 39.5% 61.8%
MobileNet 29.2% 16.2% 38.1% 60.0% 26.2% 11.8% 41.4% 61.8%
e
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5. Experimental evaluation

The results outlined in this section are based on the average accu-
racy obtained from five iterations of 4-fold cross-validation for each
experiment. This methodology, commonly employed in previous stud-
ies [31,45–47], divides the dataset into four folds, each containing an
qual number of samples. Typically, there are 25 subjects per fold,
lthough the IITDII dataset deviates from this norm with 55 subjects per
old. This procedure is repeated five times. The performance metrics,
ncluding mAP and the CMC curve, are then averaged across all folds
o obtain the final evaluation scores.

Different abstraction levels (𝜃 as discussed in Section 3.1) were
evaluated, including individual levels such as 16, 32, 64, 128, and
256 strokes, as well as combined configurations. These combined
configurations encompass a diverse range of stroke counts, including
16∪32∪64, 16∪64∪256, 64∪128∪256, and 16∪32∪64∪128∪256, provid-
ing insights into the performance across different levels of detail in the
sketches.

Also, we evaluate two baseline algorithms using implementations
rovided in the participants’ starter kit for the Unconstrained Ear
ecognition Challenge - UERC 2019. The first baseline algorithm,
eferred to as LBPbase, relies on a Local Binary Pattern (LBP)-based ap-
roach. Here, feature vectors for each test sample are computed directly
rom hand-crafted LBP features without any training [48,49]. These

feature vectors are represented as histograms and compared using
the Bhattacharyya distance. The second baseline algorithm, hereinafter
denoted as DenseNet121base, uses the DenseNet121 architecture for gen-
erating embeddings for test samples, which are then compared using
he Euclidean distance. The choice of DenseNet121 as the backbone

baseline is attributed to its superior performance across all datasets.
Tables 1 and 2 showcase the mAP attained by each backbone

odel at the optimal abstraction level 𝜃 across the considered datasets.
otably, DenseNet121 emerges as the frontrunner, yielding remarkable
AP scores of 40.6% for AMI, 33.8% for AWE, 33.8% for IITDII, and
9.2% for BIPLab. This consistent performance across datasets exhibits
ts prowess in extracting discriminative features from ear sketches.
espite DenseNet121’s dominance, it is important to acknowledge

he runner-up approaches, including EfficientNetB0, EfficientNetB7,
 i

5 
and MobileNet, demonstrating competitive performance across both
datasets. Additionally, it is noteworthy that DenseNet121 also excels
in rank-1 accuracy, achieving commendable scores of 24.2% for AMI,
20.3% for AWE, 20.0% for IITDII, and 23.0% for BIPLab — solidifying
its position as a reliable choice for accurate ear sketch recognition.
Moreover, the consistent dominance of DenseNet121 underscores its
robustness and adaptability to the challenges posed by real-world
datasets, making it a compelling choice for practical deployment in
diverse scenarios.

Fig. 4(a) shows the CMC curves for various models applied to the
AMI dataset, revealing distinct model performance trends. DenseNet121
starts with an initial recognition rate of 24% and consistently improves
until achieving an ideal recognition rate. This behavior underscores
DenseNet121’s adeptness in harnessing the dataset’s uniformity to re-
fine its identification accuracy progressively. Similarly, EfficientNetB0
embarks on a parallel path, achieving complete recognition with minor
mid-rank fluctuations, indicating its resilience and effective learning
from such a refined dataset. In contrast, MobileNet starts at 23%
and exhibits a more gradual increase, suggesting a potential need for
additional data to match the certainty levels of the other models in
this dataset. Transitioning to Fig. 4(b), the narrative shifts to the AWE
ar dataset, renowned for its challenging in-the-wild images. Here,
enseNet121 excels with a swift CMC curve escalation, affirming its
apability to manage the dataset’s inherent variability. MobileNet and
fficientNetB7 similarly demonstrate improvement, though their paths
iffer, emphasizing their distinct feature extraction and generalization
apabilities. Meanwhile, the baseline models, Backbonebase and LBPbase,
isplay a more incremental learning curve, underscoring the nuanced
hallenges presented by these dataset’s complexity.

Fig. 5(a) shows the CMC curves for various models on the IITDII
ataset, which comprises grayscale images of Indian individuals and
howcases the models’ performance in recognizing a diverse set of
eatures within a specific demographic. DenseNet121 starts at a 20%
ecognition rate and exhibits a consistent increase, reaching near-
erfect identification, which underscores its effectiveness in adapting
o the dataset’s diversity and grayscale nature. EfficientNetB7 begins at
5%, showing a steady ascent in recognition capabilities, illustrating
ts adaptability and nuanced learning from the dataset’s distinctive
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Fig. 4. CMC curves for AMI and AWE, when compared to the performance of the
op-performing models.

characteristics. EfficientNetB0, initiating at a slightly lower rate, pro-
resses methodically, emphasizing its capability to extract relevant
eatures from a dataset rich in cultural diversity. The Backbonebase and
BPbase baselines, starting from much lower initial recognition rates,
emonstrate a gradual improvement, reflecting again a more deliberate
ath to understanding the dataset’s complexities.

In Fig. 5(b), the CMC curves for different models are presented
against the backdrop of the BIPLab dataset, which is designed to

imic the ear region captured during phone calls with a focus on
ealism through blurring and minimal ear pose variations. DenseNet121
egins with a 23% identification rate, progressively climbing to perfect
ecognition, highlighting its robustness in handling images where the
ar occupies a dominant portion and where blurring is prevalent.
fficientNetB7 shows a similar resilience, starting at 20% and method-
cally moving to full accuracy. Its performance trajectory emphasizes
he model’s capacity to navigate through the dataset’s peculiarities,
uch as the limited yaw and pitch variations and the blurriness that
haracterizes the images. ResNet152, while starting at a lower initial
ecognition rate of 16%, demonstrates a steady improvement, reflecting
ts adaptability to the dataset’s specific conditions, albeit at a slightly
lower pace compared to DenseNet121 and EfficientNetB7. Again, the
ackbonebase and LBPbase baselines, with even lower starting points,
xhibit a consistent rise in their CMC curves but a poorly performance.

6. Abstraction analysis

In this section, we focus on the impact of varying abstraction levels
n the performance of our sketch-based recognition system. Specifi-
ally, we investigate how different levels of detail in the sketches—
easured by the number of strokes—affect recognition accuracy across
 f

6 
Fig. 5. The CMC for IITDII and BIPLab showcase the performance of the top-performing
odels.

multiple datasets and backbone architectures. By analyzing the perfor-
mance across different abstraction configurations, we aim to uncover
insights into how the model handles varying levels of complexity in
sketch representation and identify optimal configurations for improved
recognition accuracy.

The analysis is divided into two parts. First, we evaluate how
ifferent backbone architectures respond to these varying levels of ab-
traction, providing a detailed comparison of their effectiveness under
ifferent conditions. Then, we examine the influence of abstraction
evels across distinct datasets, each with unique characteristics and
hallenges.

6.1. Backbones vs abstraction levels

Understanding how individual backbone architectures respond to
varying levels of abstraction is a key aspect of our analysis. Each back-
bone has unique strengths and weaknesses when processing sketches
t different levels of detail. Examining their performance across ab-

straction levels provides valuable insights into their suitability for the
specific task of sketch-based ear recognition.

This section delves into the performance of various backbone mod-
els described in Section 3.1 at each abstraction level. We evaluate the
ffectiveness of each architecture across different stroke counts. The

configurations, ranging from single stroke levels (16, 32, 64, 128, 256)
to combined stroke levels (Config1: 16∪32∪64, Config2: 16∪64∪256,

onfig3: 64∪128∪256, and Config4: 16∪32∪64∪128∪256), illustrate
ow integrating multiple abstraction levels impacts model perfor-
ance. By doing so, we aim to identify the most effective backbone

or each abstraction level and highlight any performance trends that
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Fig. 6. mAP analysis for AMI and AWE showcase the performance of each backbone.

Fig. 7. mAP analysis for IITDII and BIPLab showcase the performance of each
backbone.
7 
may emerge across different datasets. This analysis will help deter-
mine which backbones are better suited for handling various levels of
abstraction in sketch-based ear recognition tasks.

In the AMI Backbone Analysis (see Fig. 6(a)), the simplest ab-
straction for DenseNet121 starts at 26.1% mAP for 16 and increases
moderately across the more straightforward abstraction levels (32, 64,
128, 256), reaching 36.8% when considering 256 strokes. However,
the combined configurations significantly boost, with DenseNet121
peaking at 40.4% for Config4. EfficientNet models show similar trends,
where simple abstraction levels hover around 26.7% to 30.2%, but mAP
jumps to approximately 35.3% and 39.2% in combined configurations.
InceptionV3 benefits greatly from combined abstractions, with a slight
gain in simple levels (reaching 28.3%) but peaking at 31.9% in the
inal combined configuration. This highlights the strength of combined
bstraction levels over individual levels.

In the AWE Backbone Analysis (see Fig. 6(b)), the higher abstraction
level, 16, begins with DenseNet121 at 24.8% mAP, gradually increasing
through configurations 32, 64, 128, and 256, reaching a modest 27.5%
when 256 strokes are considered. However, the combined abstraction
levels (Config1 through Config4) exhibit more substantial gains, with
DenseNet121 peaking at 33.8% for the most complex configuration,
Config4. Similar trends are observed with EfficientNetB0 and Effi-
cientNetB7, which show moderate increases from simpler abstractions
(peaking at 28.3% and 27.2%, respectively) but improve significantly
in combined configurations, reaching mAP values of around 29.3% and
28.4%. MobileNet also follows this trend, showing minor improvements
in simple abstractions but jumping to 32.2% in a complex configura-
tion. Overall, combined abstractions significantly boost mAP compared
to individual abstraction levels.

The IITDII Backbone Analysis reveals a similar pattern (see
Fig. 7(a)), where simple abstraction levels for DenseNet121 start at
24.8% and incrementally improve across 32, 64, 128, and 256, reaching
27.5%. However, the combined configurations substantially increase

AP, with DenseNet121 reaching 33.8%. EfficientNetB0 and B7 show
moderate improvements from 26.7% to 27.2% in simple abstraction
levels but achieve higher mAP values in combined configurations,
peaking at 29.1% and 29.6%. ResNet152, like the other datasets,
sees limited improvements in simple abstraction but jumps to 26.2%
in the final combined configuration. The combined configurations
consistently outperformed the simple ones.

In the BIPLab Backbone Analysis (see Fig. 7(b)), we see that the
simplest abstraction (16) for DenseNet121 starts at 25.5% and grad-
ually improves through 32, 64, 128, and 256, peaking at 35.0%.
However, when switching to combined abstractions, the mAP im-
proves significantly, reaching 39.2% at the Config3 complex level.
EfficientNetB0 and B7 show consistent trends, with simple abstraction
mAP values ranging from 29.7% to 31.9%, but combined configu-
rations yield notable improvements, peaking at 32.6% and 37.4%.
InceptionV3 and MobileNet also follow the same pattern, where gains
are limited in simple abstractions but increase considerably in com-
bined levels, with MobileNet achieving an impressive 36.6% mAP in
the final configuration.

The effect of stroke count on recognition performance is not strictly
inear, as increasing the number of strokes does not constantly improve
AP. As the number of strokes grows, the sketch representation gains
etail, potentially enhancing recognizability up to a certain point. How-
ver, beyond this threshold, additional strokes may introduce extrane-
us information that aligns differently from the discriminative features

most beneficial for effective recognition. This phenomenon can lead to
plateaus or even declines in mAP as stroke complexity increases. Fur-
thermore, different backbone architectures, such as DenseNet, ResNet,
and MobileNet, respond uniquely to variations in stroke complexity due
to their inherent architectural properties and representational capaci-
ties. While some architectures are optimized for high-level abstractions,
others perform better with more detailed, fine-grained representations,
resulting in non-linear mAP trends across varying levels of abstraction.
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Fig. 8. Relative backbones-average mAP changes across different configurations com-
pared to the first configuration using 16 strokes. Config1, Config2, Config3, and
Config4 correspond to 16∪32∪64, 16∪64∪256, 64∪128∪256, and 16∪32∪64∪128∪256,
respectively.

Additionally, with excessive stroke detail, certain backbones may begin
to overfit to these finer nuances, potentially reducing their generaliza-
ion capability. In scenarios where a higher level of abstraction captures

the subject’s core features effectively. Further, increasing stroke count
may inadvertently emphasize irrelevant details, diminishing overall
erformance. Across all four datasets—AWE, AMI, BIPLab, and IITDII—

the pattern is clear: simple abstraction levels (i.e., 16, 32, 64, 128,
256) result in modest mAP improvements for all backbones, with gains
generally plateauing around 256. However, performance significantly
increases when switching to combined abstraction levels (Config1, Con-
fig2, Config3, Config4). DenseNet121 consistently benefits the most,

hile models like EfficientNetB0, EfficientNetB7, and InceptionV3 also
ee notable improvements, especially in the combined configurations.
his consistent trend highlights the importance of leveraging combined
bstraction levels to maximize model performance across all datasets.

6.2. Datasets vs abstraction levels

Fig. 8 represents the percentage change in average mAP for vari-
ous configurations when analyzing all the different backbones in the
ontext of abstraction levels across the four distinct datasets: AMI,
WE, IITDII, and BIPLab. For the AMI dataset, the increase in mAP

s relatively steady, showing a peak performance at the eighth con-
iguration (Config3: 64∪128∪256), which indicates that combining
hese particular stroke levels yields the best result in terms of mAP
mprovement relative to the first data point. The AWE dataset shows
 more varied trend, with the highest mAP increase observed in the
eventh configuration (Config2: 16∪64∪256), suggesting that this com-
ination of strokes is most effective for the AWE dataset. However,
n contrast to the overall trend observed across all backbone models,
he DenseNet121 emerges as the top performer for the AWE dataset,
articularly when considering the eighth configuration (Config3), as
emonstrated in Table 2. Interestingly, the IITDII dataset, which
ocuses on grayscale images of Indian individuals, presents a different
attern, with the most significant mAP increase in the final configura-
ion (Config4: 16∪32∪64∪128∪256), highlighting that a broader range
f stroke levels contributes significantly to performance improvement.
astly, the BIPLab dataset, simulating ear regions during phone calls,
emonstrates consistent improvement across configurations, with the
ighest increase in mAP in the final configuration (Config4). However,
imilar to the AWE dataset, the top-performing model for the BIPLab

dataset deviates from the overall trend observed across all models.
pecifically, the optimal performance is achieved when considering the

eighth configuration (Config3), as demonstrated in Table 1.
8 
Fig. 9. The CMC curves for AMI and AWE when considering a cross-dataset approach.

These observations underscore the importance of context-specific
configuration choices in optimizing mAP improvements. The data re-
veal that while some datasets benefit from a broad combination of
stroke levels, others achieve optimal results with more targeted selec-
tions, emphasizing the necessity of tailoring feature abstraction levels
to the specific characteristics and challenges of each dataset.

6.3. Cross-dataset performance

The cross-dataset experiment evaluates the generalizability of our
pproach compared to baseline methods by testing the models on
atasets that differ from the training data. This scenario simulates
eal-world conditions where models encounter variability in subject
emographics, image quality, and environmental conditions. Each ex-
eriment uses the DenseNet121 backbone, which has been identified as
he best-performing backbone and incorporates the optimal abstraction
evel configuration as reported in Section 5. A single dataset was

used exclusively for testing for each experiment, while the remaining
datasets were combined and used for training. For instance, if the tested
dataset was AMI, then IITDII, AWE, and BIPLab were used for training.
The CMC curves presented in Figs. 9(a), 9(b), 10(a), and 10(b) depict
the performance of our model, labeled as ‘‘Ours’’, alongside the baseline
algorithms Backbonebase and LBPbase on the AMI, AWE, BIPLab, and
IITDII datasets, respectively.

Fig. 9(a) shows the CMC curve for the AMI dataset in the cross-
dataset experiment. Our method achieves an mAP of 26.7%, signifi-
antly outperforming both Backbonebase and LBPbase across all ranks.
his superior performance indicates the robustness of our approach in

adapting to variations in the AMI dataset when trained on different
data distributions. In the AWE dataset, as shown in Fig. 9(b), our
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Fig. 10. CMC curves for IITDII and BIPLab when considering a cross-dataset approach.

model achieves an mAP of 19.8%. Despite the inherent challenges of
the AWE dataset, which includes diverse and in-the-wild ear images,
our approach consistently surpasses the baseline models throughout
the ranks, demonstrating its capability to generalize well under these
nconstrained conditions.

As depicted in Fig. 10(a), our approach reaches an mAP of 20.8%
n the IITDII dataset, maintaining a clear lead over the baseline meth-
ds. The IITDII dataset, characterized by grayscale images of Indian
ndividuals, presents unique demographic-specific challenges. Finally,
he CMC curve for the BIPLab dataset in Fig. 10(b) illustrates that our

method attains an mAP of 24.2%, also outperforming the Backbonebase
and LBPbase methods. The BIPLab dataset, which mimics ear images
captured during phone calls with realistic conditions such as blurring
and limited pose variations, further highlights our model’s adaptability
and effectiveness in handling real-world scenarios.

When comparing the results of the cross-dataset experiment with the
cross-fold validation experiment, it is evident that our model performs
better in the cross-fold validation setup, as indicated by higher mAP
and rank-1 accuracy scores across all datasets. This discrepancy arises
primarily due to the differences in training and testing conditions
between the two experiments. In cross-fold validation, the training
and testing data come from the same dataset, allowing the model to
learn and adapt to the specific characteristics and distributions of that
dataset. This setup typically leads to higher performance metrics, as
the model encounters less variability and can leverage the consistency
within the data folds. However, in the cross-dataset experiment, the
model is trained on one dataset but tested on a completely different
dataset, which introduces challenges like dataset variability, unseen
data distributions, and domain shift. Each dataset has distinct char-
acteristics, such as differences in image quality, resolution, lighting
9 
conditions, and subject demographics. Second, the cross-dataset setting
exposes the model to data distributions it has not encountered during
training. This often includes variations in ear shapes, orientations, and
environmental factors that the model has not been specifically trained
to handle, resulting in a performance drop. Finally, the inherent do-
main shift between datasets, such as the difference between controlled
nvironment images in IITDII and the in-the-wild conditions of AWE,
urther exacerbates the model’s ability to maintain high performance,
articularly at rank-1, where precise matches are critical.

7. Conclusions

This paper addressed the sketch-2-image matching problem in ear
ata, focusing on the sketch abstraction level. This can be seen as a
ovelty in biometric recognition, as the previous works in this scope
se exclusively the face as trait. Hence, ear sketches not only broaden
he scope of application for sketch-based biometrics but also tap into a
ich vein of biometric data that has remained largely under-exploited.
ar sketches, with their unique contours and features, present a fresh
omain for deep learning models to demonstrate their adaptability and
ffectiveness.

The proposed approach integrates a novel adaptation of triplet loss
to handle multiple abstraction levels in ear sketches, represents an
advancement in the field. By training our model to recognize and
interpret various levels of abstraction — where each level corresponds
to a different stroke count — we enable the system to extract and
learn from the essential features that define sketches, regardless of their
complexity/detail. This methodology enhances the model’s robustness
and ability to generalize from limited information, a key advantage
when dealing with sparse and abstract inputs like sketches.

When comparing to various well-known deep learning architectures,
the consistently highest performance of DenseNet121 across all datasets
suggests its robustness and adaptability to varying conditions and
combining abstraction levels, making it an ideal candidate for sketch-
based biometric recognition tasks. Furthermore, the variation in mAP
nd rank-1 scores across different models and datasets underscores

the nuanced nature of sketch-based recognition, where model architec-
ture, dataset characteristics, and abstraction levels play crucial roles in
determining performance outcomes.
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