Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/handle/10553/135687
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Freire Obregón, David Sebastián | en_US |
dc.contributor.author | Neves, Joao | en_US |
dc.contributor.author | Emeršič, Žiga | en_US |
dc.contributor.author | Meden, Blaž | en_US |
dc.contributor.author | Castrillón Santana, Modesto Fernando | en_US |
dc.contributor.author | Proença, Hugo | en_US |
dc.date.accessioned | 2025-01-28T14:09:56Z | - |
dc.date.available | 2025-01-28T14:09:56Z | - |
dc.date.issued | 2025 | en_US |
dc.identifier.issn | 0262-8856 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/135687 | - |
dc.description.abstract | Sketch understanding poses unique challenges for general-purpose vision algorithms due to the sparse and semantically ambiguous nature of sketches. This paper introduces a novel approach to biometric recognition that leverages sketch-based representations of ears, a largely unexplored but promising area in biometric research. Specifically, we address the “sketch-2-image” matching problem by synthesizing ear sketches at multiple abstraction levels, achieved through a triplet-loss function adapted to integrate these levels. The abstraction level is determined by the number of strokes used, with fewer strokes reflecting higher abstraction. Our methodology combines sketch representations across abstraction levels to improve robustness and generalizability in matching. Extensive evaluations were conducted on four ear datasets (AMI, AWE, IITDII, and BIPLab) using various pre-trained neural network backbones, showing consistently superior performance over state-of-the-art methods. These results highlight the potential of ear sketch-based recognition, with cross-dataset tests confirming its adaptability to real-world conditions and suggesting applicability beyond ear biometrics. | en_US |
dc.language | spa | en_US |
dc.relation | PID2021-122402OB-C22 | en_US |
dc.relation.ispartof | Image and Vision Computing | en_US |
dc.source | Image and Vision Computing[ISSN 0262-8856],v. 154, (Febrero 2025) | en_US |
dc.subject | 220990 Tratamiento digital. Imágenes | en_US |
dc.subject.other | Cross-Dataset Generalizability | en_US |
dc.subject.other | Ear Biometrics | en_US |
dc.subject.other | Sketch-Based Identification | en_US |
dc.subject.other | Triplet-Loss Function | en_US |
dc.title | Synthesizing multilevel abstraction ear sketches for enhanced biometric recognition | en_US |
dc.type | Article | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.identifier.doi | 10.1016/j.imavis.2025.105424 | en_US |
dc.identifier.scopus | 85215438198 | - |
dc.contributor.orcid | 0000-0003-2378-4277 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 23396618800 | - |
dc.contributor.authorscopusid | 57197639019 | - |
dc.contributor.authorscopusid | 56097253100 | - |
dc.contributor.authorscopusid | 57191976811 | - |
dc.contributor.authorscopusid | 57218418238 | - |
dc.contributor.authorscopusid | 14016540600 | - |
dc.relation.volume | 154 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Febrero 2025 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 1,204 | |
dc.description.jcr | 4,2 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 11,0 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2378-4277 | - |
crisitem.author.orcid | 0000-0002-8673-2725 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Freire Obregón, David Sebastián | - |
crisitem.author.fullName | Castrillón Santana, Modesto Fernando | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.