Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135470
DC FieldValueLanguage
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorQuintana, Jose J.en_US
dc.contributor.authorWolniakowski, Adamen_US
dc.contributor.authorTrochimczuk, Romanen_US
dc.contributor.authorMiatliuk, Kanstantsinen_US
dc.contributor.authorCastellano, Giovannaen_US
dc.contributor.authorVessio, Gennaroen_US
dc.date.accessioned2025-01-20T13:10:14Z-
dc.date.available2025-01-20T13:10:14Z-
dc.date.issued2025en_US
dc.identifier.issn0167-8655en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/135470-
dc.description.abstractOnline signature parameters, which are based on human characteristics, broaden the applicability of an automatic signature verifier. Although kinematic and dynamic features have previously been suggested, accurately measuring features such as arm and forearm torques remains challenging. We present two approaches for estimating angular velocities, angular positions, and force torques. The first approach involves using a physical UR5e robotic arm to reproduce a signature while capturing those parameters over time. The second method, a cost-effective approach, uses a neural network to estimate the same parameters. Our findings demonstrate that a simple neural network model can extract effective parameters for signature verification. Training the neural network with the MCYT300 dataset and cross-validating with other databases, namely, BiosecurID, Visual, Blind, OnOffSigDevanagari-75 and OnOffSigBengali-75 confirm the model's generalization capability. The trained model is available at: https://github.com/gvessio/SignatureKinematics.en_US
dc.languageengen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.sourcePattern Recognition Letters[ISSN 0167-8655],v. 187, p. 130-136, (Enero 2025)en_US
dc.subject.otherPredictionen_US
dc.subject.otherUr5 Robotic Armen_US
dc.subject.otherNeural Networksen_US
dc.subject.otherKinematic And Dynamic Featuresen_US
dc.subject.otherSignature Verificationen_US
dc.titleNeural network modelling of kinematic and dynamic features for signature verificationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patrec.2024.11.021en_US
dc.identifier.isi001372534600001-
dc.identifier.eissn1872-7344-
dc.description.lastpage136en_US
dc.description.firstpage130en_US
dc.relation.volume187en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Diaz, M-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.contributor.wosstandardWOS:Quintana, JJ-
dc.contributor.wosstandardWOS:Wolniakowski, A-
dc.contributor.wosstandardWOS:Trochimczuk, R-
dc.contributor.wosstandardWOS:Miatliuk, K-
dc.contributor.wosstandardWOS:Castellano, G-
dc.contributor.wosstandardWOS:Vessio, G-
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,4
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0003-1166-6257-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameQuintana Hernández, José Juan-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Mar 30, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.