Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135467
Título: Low-Power Implementation of a U-Net-based Model for Heart Sound Segmentation on a Low-Cost FPGA
Autores/as: Eneriz, Daniel
Rodriguez-Almeida, Antonio J.
Fabelo, Himar 
Callicó, Gustavo M. 
Medrano, Nicolas J.
Calvo, Belen
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Cardiovascular Disease (Cvd) Detection Computer-Aid Diagnostic
Convolutional Neural Networks (Cnns)
Deep Learning
Edge Ai
Embedded Systems, et al.
Fecha de publicación: 2024
Conferencia: 27th Euromicro Conference on Digital System Design, DSD 2024 
Resumen: This work presents a Field-Programmable Gate Array (FPGA) implementation of a U-Net-based model for heart sound segmentation, building on previous hardware optimization efforts. By converting model parameters to Read-Only Memories instead of Advanced eXtensible Interface (AXI) ports, Block Random Access Memory consumption decreased significantly, from 99% to 58%. Additionally, latency was reduced from 29.27 to 17.66 ms as estimated during High-Level Synthesis (HLS) cosimulation. The U-Net block was integrated into a block design, connected to the Zynq Processing System, facilitating model evaluation on the PYNQ-Z2 board. Model accuracy reached 91.14%, close to HLS C simulation results and high-level Python description. FPGA measured latency was 17.77±0.01 ms, achieving real-time performance, with power consumption estimated at 134±14 mW. Energy per inference was calculated at 2.38±0.07 mJ. A power reduction study showed a 22 % decrease in minimum power consumption compared to default settings, but no significant reduction in energy consumption was observed. This study offers insights for future optimizations, highlighting the applicability of FPGA-based heart sound segmentation in real-world scenarios, and setting the specifications for a potential hand-held device based on this design.
URI: http://hdl.handle.net/10553/135467
ISBN: 9798350380385
DOI: 10.1109/DSD64264.2024.00085
Fuente: Proceedings - 2024 27th Euromicro Conference on Digital System Design, DSD 2024[EISSN ], p. 596-603, (Enero 2024)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.