Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135464
Campo DC Valoridioma
dc.contributor.authorQuintana Quintana, Laura-
dc.contributor.authorVega, Carlos-
dc.contributor.authorLeón, Raquel-
dc.contributor.authorSocorro Marrero, Guillermo V.-
dc.contributor.authorOrtega, Samuel-
dc.contributor.authorCallicó, Gustavo M.-
dc.date.accessioned2025-01-20T12:55:24Z-
dc.date.available2025-01-20T12:55:24Z-
dc.date.issued2024-
dc.identifier.isbn9798350380385-
dc.identifier.issn2639-3859-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/135464-
dc.description.abstractHyperspectral imaging (HSI) has gained prominence in medical diagnostics due to its ability to capture and analyse detailed spectral information beyond human visual capabilities. Processing of HSI data is essential to enhance subsequent analysis and ensure the accuracy of results by reducing noise and unwanted artifacts. This paper provides an overview of state-of-the-art processing methods for HSI data, focusing on smoothing, normalization, and spectral derivatives. The efficacy of these methods is evaluated using root mean square error (RMSE) to compare pre-processed data with wavelength reference standard, alongside execution time considerations. Results indicate that certain algorithms, such as smoothing based on moving average, standard normal variate, and first spectral derivatives, yield superior performance across different medical HSI systems. Additionally, combining these processing techniques further improves data fidelity to the wavelength reference standard. Overall, this study offers insights into optimal processing strategies for enhancing the accuracy and reliability of HSI data.-
dc.languageeng-
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial-
dc.relation.ispartof2024 27Th Euromicro Conference On Digital System Design, Dsd 2024-
dc.sourceProceedings - 2024 27th Euromicro Conference on Digital System Design, DSD 2024[EISSN ], p. 464-471, (Enero 2024)-
dc.subject3307 Tecnología electrónica-
dc.subject.otherHyperspectral Imaging-
dc.subject.otherNormalization-
dc.subject.otherProcessing Methods-
dc.subject.otherSmoothing-
dc.subject.otherSpectral Derivatives-
dc.titleAssessing Processing Strategies on Data from Medical Hyperspectral Acquisition Systems-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conferenceEuromicro Conference on Digital System Design. 27. 2024-
dc.identifier.doi10.1109/DSD64264.2024.00068-
dc.identifier.scopus85211944216-
dc.identifier.isi001414927800059-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58183363200-
dc.contributor.authorscopusid57743927600-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid57200512452-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56006321500-
dc.description.lastpage471-
dc.description.firstpage464-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages8-
dc.utils.revision-
dc.contributor.wosstandardWOS:Quintana-Quintana, L-
dc.contributor.wosstandardWOS:Vega, C-
dc.contributor.wosstandardWOS:Leon, R-
dc.contributor.wosstandardWOS:Socorro-Marrero, GV-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Callico, GM-
dc.date.coverdateEnero 2024-
dc.identifier.conferenceidevents155559-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate30-05-2024-
crisitem.event.eventsenddate31-05-2024-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1154-6490-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0003-2543-1571-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameQuintana Quintana, Laura-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameSocorro Marrero, Guillermo Valentín-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
Colección:Actas de congresos
Unknown (1,36 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.