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Abstract— Hyperspectral imaging (HSI) has gained 
prominence in medical diagnostics due to its ability to capture and 
analyse detailed spectral information beyond human visual 
capabilities. Processing of HSI data is essential to enhance 
subsequent analysis and ensure the accuracy of results by 
reducing noise and unwanted artifacts. This paper provides an 
overview of state-of-the-art processing methods for HSI data, 
focusing on smoothing, normalization, and spectral derivatives. 
The efficacy of these methods is evaluated using root mean square 
error (RMSE) to compare pre-processed data with wavelength 
reference standard, alongside execution time considerations. 
Results indicate that certain algorithms, such as smoothing based 
on moving average, standard normal variate, and first spectral 
derivatives, yield superior performance across different medical 
HSI systems. Additionally, combining these processing techniques 
further improves data fidelity to the wavelength reference 
standard. Overall, this study offers insights into optimal 
processing strategies for enhancing the accuracy and reliability of 
HSI data. 

Keywords— hyperspectral imaging, processing methods, 
smoothing, normalization, spectral derivatives.  

I. INTRODUCTION

Hyperspectral (HS) imaging (HSI) is a technique that 
captures and analyses a portion of the light spectrum in fine 
detail, often beyond human visual capabilities. This allows for 
the detection of substances with different spectral signatures. 
While initially used in remote sensing [1], HSI is increasingly 
applied in medical contexts for pathology identification, such as 
breast tumour [2], brain histological samples [3], colon and 
esophagogastric cancer [4], or skin and lung cancers [5]. After 
HSI capturing and prior to the development of tissue 
classification algorithms, HS data is pre-processed to remove 
non-tissue-related variability (e.g. inhomogeneities in 
illumination and noise in acquisition systems). The pre-
processing algorithms usually aim to enhance subsequent 
information extraction from the data, such as compensate data 
according to Lambert-Beer's law or improving classification and 
regression models.  

Traditional works were centred on spectral correction of HSI 
data. Numerous studies have investigated near-infrared (NIR) 
spectroscopy pre-processing, highlighting its critical role for 
subsequent analysis. It has been widely used in chemometrics, a 
field dedicated to correlating chemical measurements with 
properties of interest, such as the concentration of specific 
molecules. In 2009, Rinnan et al. published a review of the most 
common processing techniques for near-infrared spectra [6]. 

The authors classified pre-processing algorithms into two 
categories: scatter-correction and spectral derivatives. The 
theoretical foundations of the algorithms were explained, and a 
quantitative experiment was performed over near-infrared data 
of marzipan samples. Root Mean Square Error (RMSE) results 
indicated that the maximum improvement of any pre-processed 
model compared to the unprocessed one was approximately 25 
%. These findings underline the challenge of identifying the best 
pre-processing method, mainly due to the impact of incorrect 
parameter settings, such as window size for smoothing 
algorithms. Additionally, it is noted that combining processing 
techniques is common practice, with guidelines typically 
recommending smoothing before normalization.  

Likewise, in 2013, Engel et al. reviewed several pre-
processing algorithms for chemometric data analysis (e.g. noise 
removal, base line offset and slope, light scatter, temporal and 
spectral misalignment, normalization, etc.) [7]. The authors 
focused on selecting the optimal data-analysis strategy to choose 
the combination of pre-processing methods that effectively 
remove artifacts and enhance the necessary information for 
various data-analysis goals. They explored three main 
approaches: trial and error based on subsequent analysis results, 
visual examination for artifacts, and quantifying data quality 
parameters to assess artifacts. These strategies were tested on a 
labelled dataset of beers with different alcohol content. Results 
indicated that choosing an effective pre-processing method, or 
combination of methods, significantly impacts analysis 
outcomes, with a variance of over 20 % in model accuracy 
between the best and worst pre-processing strategies. The study 
concluded that suboptimal pre-processing can greatly hinder 
data analysis goals, highlighting the need for a robust, 
quantitative approach to determine the optimal pre-processing 
strategy. 

Following these lines, in 2004, Ezenarro et al. developed a 
MATLAB® toolbox named ProSpecTool to aid in selecting 
optimal pre-processing techniques for regression models in 
infrared (IR) spectroscopy [8]. ProSpecTool addressed the 
challenge by using objective criteria to filter and iterate pre-
processing methods, including the classic set of pre-processing 
techniques (smoothing, normalization and derivatives) over raw 
data. The Forages dataset [9] was used as an example and 
performance evaluation metrics were calculated using pre-
processed data. Results indicated that ProSpecTool can produce 
robust models comparable to those from trial-and-error 
approaches, but in significantly less time. Authors suggested 
that ProSpecTool could be an invaluable exploratory tool for IR 
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spectroscopy practitioners, although final model validation and 
interpretation remain being the responsibility of the analyst. 
Recently, in 2023, Cozzolino et al. provided a broad overview 
of pre-processing methods for HSI data [10]. The article 
discussed several pre-processing methods beyond the former 
explained scatter correction and spectral derivatives algorithms 
(e.g., dimension reduction, resolution enhancement, geometric 
correction). As previous authors have concluded, they stated that 
pre-processing techniques are crucial to ensure the accuracy and 
reliability of the results by reducing interferences such as noise 
and unwanted artifacts. They also highlighted the need for 
iterative evaluation and simplicity in pre-processing techniques.  

Other authors have centred their efforts just on removing 
noise from HS images, since it can disrupt accuracy of HS 
spectral-spatial feature classification. Singh et al. work proposed 
a new method involving interpolation to recover lost band 
information [11]. It employs Principal Components Analysis 
(PCA) [12] and Locality Preserving Projection (LPP) [13] to 
extract hybrid features, blending local and global spatial data. 
They tested it on standard datasets (Indian Pines, Salinas, Pavia 
University, and Kennedy Space Centre) and results showed that 
the accuracy of the classification increased significantly (313.81 
%, 1448.33 % 153.21 % and 139.21 %, respectively) when the 
proposed framework is blended with state-of-the-art classifiers. 
Additionally, Bharath Bhushan et al. introduced a processing 
algorithm for band selection in HSI analysis, focused on 
removing noisy bands [13]. This algorithm calculates average 
inter-band block-wise correlation coefficients and applies a 
simple thresholding strategy based on their standard deviation. 
Validation using AVIRIS data [14] demonstrates its ability to 
identify noisy and water absorption bands accurately. The 
algorithm achieves a 94.73 % probability of correctly detecting 
noisy bands and a 3.18 % probability of false detection. The 
authors concluded that this processing algorithm successfully 
eliminates noise, improves band quality, and reduces 
computation complexity in band selection. 

Out of all the spectral data processing documents found in 
the state-of-the-art, just two of them specifically addressed 
processing techniques for medical HS data. In 2015, Koprowski 
introduced a source code that can be freely used for preliminary 
HS data analysis on MATLAB® and discusses problems 
encountered when analysing medical HS images [15]. The 
application facilitates preliminary analysis of HS images, 
including reading data in various formats, calibration, filtering, 
and visualization. The graphical user interface and source code 
are available for download without restrictions, enabling users 
to modify and utilize them as needed. However, the authors did 
not investigate the impact of various standard processing 
methods on medical HS data. Thus, in 2022, Witteveen et al. 
conducted a comparison of different processing algorithms to 
reduce variations in spectra, caused by external factors, while 
preserving contrast between tissues with different optical 
properties [16]. They created a synthetic database by simulating 
tissue with differences in blood volume fraction, presence of 
different absorbers, scatter amplitude, and scatter slope. 
Furthermore, in order to test the methods for clinical validation, 
two clinical databases were collected (breast [17] and colorectal 
[18] tumour) in the Visible and Near Infrared (VNIR) and NIR 
ranges.  Then, they analyse several processing algorithms which 

can be divided into normalization and spectral derivatives. The 
evaluation metrics included the overlap coefficient, which was 
calculated over pre-processed data belonging to different classes 
(e.g. 0.5 % or 2 % of blood volume fraction). They conclude 
that, overall, normal standardization (SNV), min–max, area 
under the curve, and single wavelength normalization are the 
most appropriate methods for processing data intended for the 
development of a tissue classification algorithm.  

After this review of the state-of-the-art, it can be extracted 
that the current research faces limitations due to the absence of 
a clear standard for processing medical HS data. This lack of 
standard hinders the development of precise HSI intraoperative 
margin assessment techniques needed in medical context (e.g., 
complete tumour removal while preserving healthy tissue in 
cancer surgery) [19]. However, these requirements for precision 
are not as stringent in fields such as agriculture, food science, or 
chemometrics. Witteveen et al. did a review of eight processing 
algorithms, but only normalization and spectral derivative 
methods were studied. The aim of this work is to preliminary 
design a standard for preprocessing HS data from medical HS 
acquisition systems. State-of-the-art processing methods are 
going to be assessed, including noise removal techniques 
(smoothing), intensity misaligns of signals (normalization) and 
spectral derivatives. Each algorithm will be applied to HS 
images of a wavelength reference polymer captured using 
several medical HS systems. Finally, the data resulting from 
each processing method, or combination of them, will be 
evaluated against the wavelength reference standard of the 
material using RMSE, while also considering execution time. 

II. MATERIAL AND METHODS 
The whole set of medical HS systems included in this work 

will be described, the spectral characterisation target will be 
shown and finally, the different spectral processing methods and 
evaluation metrics will be presented.   

A. Hyperspectral Medical Systems  
Several medical HS systems, customized for various 

applications (gynaecology (G_VNIR) [20], [21], histology 
(H_VNIR) [22], [23], [24], and neurosurgery (N_VNIR and 
N_NIR) [25], [26]) are going to be used in this study. Table I 
provides a summary of the medical HS systems, their integrated 
HS camera, and their key optical features.  

TABLE I SUMMARY OF MEDICAL HS SYSTEMS 

 G_VNIR H_VNIR N_VNIR N_NIR 
Application Gynaecology Histology Neurosurgery Neurosurgery 

Optical 
System 

Colposcope 
OP-C5 

(OPTOMIC 
ESPAÑA, 

S.A., Spain) 

Microscope 
Olympus 

BX53 
(OLYMPUS 
Corp., Tokyo, 

Japan) 

Custom Custom 

HS Camera SnapScan 
VNIR 

Pushbroom 
VNIR 

Pushbroom 
VNIR 

Pushbroom 
NIR 

Magnification 0.4×, 0.6×, 1×, 
1.6×, 2.5× 

5×, 10×, 20× 
and 50× 1× 1× 

Halogen 
Lamp Power 

(W) 
50 100 150  150 
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More information about the HS sensor employed by each 
medical HS system is available in Table II. These setups are 
shown in Fig. 1. In addition, it must be mentioned that, for each 
medical HS system, custom software was developed to set 
image acquisition parameters. 

TABLE II SUMMARY OF HS CAMERAS 

 SnapScan 
VNIR 

Pushbroom 
VNIR 

Pushbroom 
NIR 

HS Camera 

Imec 
SNAPSCAN 
VNIR (Imec, 

Leuven, 
Belgium) 

Hyperspec® 
VNIR A-Series, 

(Headwall 
Photonics, Inc., 

MA, USA) 

Hyperspec® 
NIR 100/U, 
(Headwall 

Photonics, Inc., 
MA, USA) 

HS 
Technology SnapScan Pushbroom Pushbroom 

Sensor 

CMOS sensor, 
ams CMV2000 
(ams OSRAM 
AG, Munich, 

Germany) 

CCD sensor, 
Adimec-1000m 

(Adimec 
Advanced Image 

Systems B.V., 
Eindhoven, 

Netherlands) 

InGaAs sensor, 
Xeneth XEVA 
5052 (Xenics 
nv, Leuven, 
Belgium) 

Spectral 
range (nm) 470 - 900 400 - 1000 900–1700 

Spectral 
Sampling 

(nm) 
2.86 0.72 4.65 

Spectral 
Bandwidth / 

FWHM 
(nm) 

10-15 2.5 4 

# Spectral 
Channels 158 826 172 

FOV (pixels) 1000 x 900 1×1004 1×320 
Pixel Size 

(μm) 5.5 7.4 4.8 

*CMOS: complementary metal-oxide semiconductor. CCD: charge-coupled 
device. InGaAs: Indium gallium arsenide. FOV: Field of View.   

 

Fig. 1. Set-ups: (a) G_VNIR, (b) H_VNIR, (c) N_VNIR, and (d) N_NIR. 

B. Spectral Characterization Target 
The spectral characterization target which is going to be 

employed in this study is the NIST (National Institute of 
Standards and Technology) traceable wavelength calibration 
standard, which is composed by a mixture of three pure, rare-
earth oxides (holmium, erbium, and dysprosium), mixed into 
Zenith Polymer® (LabSphere, Inc., NH, USA). The wavelength 

reference polymer exhibits distinct absorption peaks which 
provides a stable wavelength reference standard for validating 
spectrophotometers data. In Fig. 2 (a) it can be seen an image of 
the polymer itself which was captured once by each of the 
medical HS systems generating HS cubes of different sizes 
(G_VNIR (captured at 0.6×): 900×1000×158, H_VNIR 
(captured at 10×): 100×1004×826, N_VNIR: 741×1004×826, 
and N_NIR: 253×320×172). Fig. 2 (b) displays the spectral 
wavelength provided by the manufacturer (250 to 2450 nm, 
2200 bands at 0.1 nm spectral resolution). 

 
Fig. 2. Wavelength reference standard (a) picture and (b) spectral signature. 

C. Processing Methods  
During processing of HSI data, first flat-field correction is 

performed over the data to address variations caused by sensor 
and environmental factors [27]. This involves transforming 
digital numbers into radiation intensity [28] or true reflectance 
values [29], [30], [31]. The processes to convert raw sensor data 
(R) into calibrated images (CI), indicated in equation (1), 
requires a dark current (DC) capture, acquired with the shutter 
closed, and a white reference (WR), obtained using a diffuse 
reflectance standard from SphereOptics, which is produced 
using a Zenith Polymer® (LabSphere Inc., NH, USA) 
reflectance material [32]. This material is based on 
polytetrafluoroethylene and ensures a reflectivity above 99 %, 
making it an excellent choice for reflectance standards as it can 
withstand high levels of heat, humidity, and radiation exposure. 
These standards have a matte Lambertian reflecting surface, 
ensuring nearly equal intensity in all directions, with total 
reflection close to 100 % [32]. 

   (1) 

Flat-field correction is a well-established initial step before 
any further HSI processing  [29], [30], [31], [33], [34]. However, 
further processing is subjected to the HSI instrumentation and 
data being studied. State-of-the-art HSI processing algorithms 
can be divided into smoothing, normalization, and spectral 
derivatives. Additionally, as emphasized by Rinnan et al. [6], 
the common practice involves combining processing 
techniques, with recommendations suggesting smoothing 
preceding normalization.  

a. Smoothing Algorithms 

Smoothing algorithms, aiming at reducing noise and 
irregularities, are conducted in the spectral domain of the data. 
These algorithms consider a symmetric window comprising  
neighbours to the right- and left-hand side of a certain sample in 
the data sequence. All these values together comprise a 
smoothing window of odd value , defined by 2 . Since the 
signal at each point is affected by its neighbours’ values, 
smoothing algorithms help to enhance signal and mitigate 
fluctuations, making patterns or trends more discernible but 
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attenuating high-frequency characteristics. The most common 
smoothing algorithms were selected for this study (Table III), 
where each algorithm is applied over a single spatial pixel , 
producing a smoothed spectrum .  symbolizes the 
wavelength parameter. 

 2 1;    (2) 

TABLE III SMOOTHING ALGORITHMS SUMMARY 

Name Acronym Equation  Description 

Average MOVMEAN 
1   

Mean value over a 
window to preserve the 
central tendency of the 
data. 

Median MOVMEDIAN  
 

Median value over a 
window to preserve the 
central tendency of the 
data when outliers are 
present. 

Gaussian-
weighted 
average 

GAUSSIAN   
 

Gaussian-shaped weights 
), with standard 

deviation set to /5, 
emphasizing points 
closer to the centre of the 
window. 

Linear 
regression [35] LOWESS 

 

 
       
     

First degree polynomial 
fitting 1 . 

Quadratic 
regression [36] LOESS 

Second degree 
polynomial fitting 2 . 

Robust linear 
regression [37] RLOWESS 

Modifies LOWESS by 
iteratively adjusting the 
weights to give less 
influence on outliers in 
the regression 1 . 

Robust 
Quadratic 
regression [37] 

RLOESS 

Modifies LOESS by 
iteratively adjusting the 
weights to give less 
influence on outliers in 
the regression 2 . 

Savitzky-
Golay filter 
[38] 

SGOLAY 
1   

Least squares fit via 
quadratic convoluting 
integers ( ) and 
normalizing factor (F). 

b. Normalization Algorithms 

Normalization methods are employed in HSI to standardize 
data across its spectral component, ensuring comparability and 
removing biases caused by scale differences. The six 
normalization methods chosen for this work were the ones 
provided by Witteveen et al [16] in their review. They are further 
explained in (Table IV). Each algorithm is applied over a single 
spatial pixel , producing a normalized spectrum .  
symbolizes the wavelength parameter. 

TABLE IV. NORMALIZATION ALGORITHMS SUMMARY 

Name Acronym Equation  Description 

Standard 
normal 
variate[39] 
 

SNV  

Each spectrum is 
subtracted its own 
arithmetic mean ( ) 
and divided by the 
unbiased estimation of 
its standard deviation 
( . 

Multiplicative MSC  Each spectrum is 

scatter 
correction [40], 
[41] 

 ; scaled and offset to fit 
a reference (mean 
spectrum). 

Min-max 
Normalization MINMAX 

min max min Each spectrum is 
scaled and offset using 
its min and max 
values.  

Mean centering MC  
Each spectrum is 
subtracted its own 
mean. 

Single 
wavelength SW 

 arg max  
 

Each spectrum is 
divided by its value at 
the reference 
wavelength with most 
reflectance ( ). 

Area Under the 
Curve AUC  Each spectrum is 

divided by its AUC. 

c. Spectral Derivatives Algorithms 

Finally, spectral derivative algorithms analyse changes in 
spectral data, revealing variations in absorption, reflectance, or 
emission properties across wavelengths. The specificity of 
absorption ranges of human molecules, as noted by Steven 
Jaques [REF], typically contains crucial information for 
distinguishing tissues. However, detecting small peaks can be 
challenging. In this sense, derivative methods, are crucial for 
identifying subtle spectral features and patterns not readily 
apparent in calibrated data. For this preliminary study, just the 
first and second derivatives were assessed for simplicity. They 
are detailed in Table V, where  is the value of the derived 
spectrum at that . 

TABLE V DERIVATIVES ALGORITHS SUMMARY 

Name Acronym Equation  Description 

First derivative 
 FD 

 Approximation of the first 
derivative of each spectrum 
from first differences.  

Second 
derivative 
 

SD 
 2 Approximation of the 

second derivative of each 
spectrum from second 
differences. 

D. Evaluation Metrics  
After calculating the different processing over the calibrated 

data, evaluation metrics are needed to assess the similarity 
between the pre-processed data and the wavelength reference 
standard. Additionally, execution time is measured to compare 
their overall performance.   

a. RMSE 

RMSE is a statistical measure that assesses the accuracy of a 
model by quantifying the differences between observed ( ) and 
actual ( ) values, as described in (3), where  is the common 
size of both, the observed and the actual sequences. A lower 
RMSE value, close to zero, indicates a stronger similarity 
between the spectral signatures.   

 1
 (3) 

The methodology followed in this work includes the 
evaluation of pre-processed HS data against a wavelength 
reflectance standard. In terms of smoothing algorithms, it must 
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be considered that its aim is to reduce local noise while keeping 
main features of the signal intact. Thus, when evaluating spectral 
signatures pre-processed using a smoothing algorithm, the data 
is compared to the wavelength reflectance standard. Since in 
normalization and spectral derivative methods the HS data 
undergoes a transformation that alters its offset and scale, their 
inverse operation is applied over the pre-processed data relative 
to the wavelength reflectance standard. For instance, in the case 
of the MC normalization method, following the subtraction of 
each spectrum's individual mean, the average value of the 
wavelength reflectance standard is added back to all spectra.  

b. Execution Time 

To determine the execution time of each algorithm in 
MATLAB® 2023a, the processing algorithms will be timed 
10,000 times across a dataset composed of 10 pixel-wise spectra 
of 3095 bands each. The processing methods was executed on 
an Intel(R) Core (TM) i7-10700K processor with 64 GB of 
RAM. 

III. RESULTS AND DISCUSSION 
In this section, the reflectance data will be shown. Several 

processing methods are applied over the HS data, which are then 
compared to the wavelength reflectance standard.  

A. Flat-field Correction  
Flat-field correction was carried out over the captured HS 

data to compensate for variations due to sensor and 
environmental factors. This process involved converting digital 
numbers into radiation intensity or true reflectance values. Then, 
extreme bands were removed for each sensor, since they exhibit 
a low signal to noise ratio. In the H_VNIR and N_VNIR 
systems, since they use the same HS camera, the same spectral 
range was removed (400- 440 and 909-1000 nm), resulting two 
HS cubes composed by 645 spectral bands each. The HS cubes 
of N_NIR system were composed of 144 spectral bands, 
removing the 900-956 and 1638-1700 nm spectral range. 
Finally, a registration of the wavelength reflectance standard 
with the HS data of each setup was performed by selecting the 
closets values of the standard wavelength vector with respect to 
the one of each setup (mean produced error was 0.025 nm).  

Fig. 3 illustrates, for each setup, one calibrated spectral 
signature and its registered wavelength reference standard. It is 
important to note that the wavelength calibration standard is 
made of is a mixture of three pure, rare-earth oxides (Holmium, 
Erbium and Dysprosium) mixed into Zenith Polymer®. 
Whereas the SphereOptics white reference exhibits diffused 
reflection, light can be specular reflected in the small crystals of 
the rare-earth polymer, resulting in higher values on the raw HS 
cube compared to those in the white reference. This effect can 
cause the calibrated cube to have values above one, as seen in 
Fig. 3 (a), (b) and (c). Other wavelengths calibration standards 
will be explored in future experiments. 

 
Fig. 3. Calibrated spectral signature of the different medical HS systems (blue), 
and the registered wavelength reference standard (black): (a) G_VNIR, (b) 
H_VNIR, (c) N_VNIR, and (d) N_NIR. 

B. Processing Methods  

a. Smoothing Algorithms 

Smoothed pre-processed data from different setups were 
compared to the wavelength reflectance standard to find a 
smoothing method that balances the reduction of high-frequency 
noise and the retention of significant data. Smoothing was 
performed using a prescribed number of neighbours, 7, which 
resulted in window sizes of 20.02 nm for G_VNIR, 5.04 nm in 
H_VNIR and N_VNIR, and 32.55 nm in N_NIR (see Table II). 
These differences explain the dependency of results on the 
particular HS sensor used, as shown in Fig. 4 (a). H_VNIR and 
N_VNIR systems use the same pushbroom VNIR camera, and 
so their most effective algorithm correlates (MOVEMEAN). For 
the other two medical HS systems, GAUSSIAN algorithm 
works best for G_VNIR and LOESS for N_NIR.  This last 
medical HS system consistently yields the best results, possibly 
due to its larger spectral sampling, since a wider spectral 
window is being considered when smoothing. Conversely, the 
H_VNIR system exhibits the opposite behaviour. This 
discrepancy suggests that the optimal smoothing algorithms and 
window sizes may need to be customized for different medical 
HSI systems. Furthermore, RMSE values of the unprocessed 
data with respect to the wavelength reflectance standard are also 
given for comparison (REF in Fig. 4 (a)). In terms of execution 
times (Fig. 4 (b)), it must be considered that RLOWESS and 
RLOESS have significantly longer execution times (~ 40.000 s) 
compared to others (~ 0.050 s), making the former ones less 
desirable. Also, it should be noted that MOVEMEAN is the 
fastest (0.035 s) since it is the simplest one.  
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Fig. 4. Smoothing processing methods evaluation: (a) RMSE and (b) execution 
times. * represents the best values for each HS system. 

b. Normalization Algorithms 

Several normalization algorithms have been also examined, 
ranging from simple subtraction (MC) or scaling (AUC, SW) to 
combinations of these methods (SNV, MSC, MM). Results in 
Fig. 5 (a), indicate that SNV algorithm outperforms other 
normalization methods across all setups. The SNV algorithm is 
one of the combined methods that brings the pre-processed HS 
data closer to the wavelength reflectance standard. This 
algorithm becomes useful for uniform samples, but it should be 
further studied in real-world scenarios. Moreover, it can be 
observed that reference RMSE values of the unprocessed data 
with respect to the wavelength reflectance standard (REF in Fig. 
5 (a)) are clearly improved using all methods but SW. Regarding 
execution times (Fig. 5 (b)), all algorithms take approximately 
0.002 to 0.054 s. However, MSC is in the upper time bound, as 
it requires the fitting of a polynomial for each data point. The 
rest of the methodologies, based on basic operations, show no 
significant differences in their execution times.  

 
Fig. 5. Normalization processing methods evaluation: (a) RMSE and (b) 
execution times. * represents the best values for each HS system. 

c. Spectral Derivatives Algorithms 

Spectral derivative algorithms were also examined as an 
extra step of the processing chain. It is crucial to note that these 
methods are highly sensitive to noise, thus they must be applied 
to data that have already undergone noise reduction. Since 
MOVMEAN and SNV were the best performing algorithms, 
they are selected as the initial step before applying spectral 
derivatives. Results of comparing spectral derivate HS data with 

respect to the wavelength reflectance standard are shown in Fig. 
6 (a). RMSE values show that FD performed better than the SD, 
although, not better than evaluating the unprocessed data with 
respect to the wavelength reflectance standard (REF in Fig. 6 
(a)). This could be attributed to noise in the data. While 
derivatives are essential for identifying subtle spectral features 
and patterns that are not easily visible in calibrated data, they 
also amplify noise peaks. In terms of execution times (Fig. 6 
(b)), SD algorithm is slower since it is composed of two FD in 
series. 

 

Fig. 6. Derivatives spectral processing methods evaluation: (a) RMSE and (b) 
execution times.* represents the best values for each HS system.  

d. Combination of Algorithms 

Furthermore, as recommended by Rinnan et al. [6], 
combining various processing algorithms is advisable, 
specifically suggesting smoothing prior to normalization. 
Following this guidance, all normalization algorithms were 
tested after applying each smoothing algorithm to the HS data, 
resulting in a total of 48 combinations. Table VI presents the 
RMSE values for each medical HS system, detailing the results 
for optimal smoothing, normalization, their combination, and 
the additional step of applying spectral derivative methods. 

TABLE VI. RMSE OF BEST PERFORMING PROCESSING ALGORITHMS 

 G_VNIR H_VNIR N_VNIR N_NIR 

Smoothing 
GAUSSIAN MOVMEAN MOVMEAN LOESS 

0.075 0.091 0.061 0.043 

Normalization 
SNV 

0.037 0.063 0.018 0.016 

Smoothing + 
Normalization 

SGOLAY 
+ SNV 

MOVMEAN  
+ SNV 

GAUSSIAN 
+ SNV 

LOESS  
+ SNV 

0.035 0.036 0.015 0.015 

Smoothing + 
Normalization + 

Spectral Derivative 

MOVMEAN + SNV + FD 

0.045 0.077 0.0423 0. 0432 

 

Although there is a consensus on the best normalization 
method (SNV), results show discrepancies in the best smoothing 
algorithms when applied alone versus in combination with 
normalization. This is due to the small differences between 
methods (~0.001). Additionally, applying derivatives to the data 
does not improve the evaluation results. Fig. 7  illustrates, for 
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each medical HS system, the processed data providing the best 
results (their best smoothing following by SNV normalization 
without the further step of derivatives). The calibrated and 
reference data are also provided for qualitatively evaluation. It 
can be observed how after the processing step, the H_VNIR data 
still shows high levels of noise, contrasting with the notably 
improved performance of G_VNIR and N_NIR data. This might 
be due to the lower spectral sampling of the pushbroom VNIR 
sensor, as the window size is not optimized to effectively reduce 
its high-frequency noise peaks. Further analysis is required to 
optimize the window size, adapting it to different spectral 
sampling sensors. 

 
Fig. 7. Best pre-processed, smooth and normalized, spectral signature (orange) 
for each medical HS system, calibrated spectral signatures (blue) and 
wavelength reflectance standard (black): (a) G_VNIR, (b) H_VNIR, (c) 
N_VNIR, and (d) N_NIR. 

IV. CONCLUSION 
In this study, the need for effective processing methods in 

medical HSI data was addressed. The innovation lies in the 
generic optimization of spectral processing methods using a 
wavelength reflectance standard, instead of analysing a dataset 
for a specific application. The objective was to evaluate 
processing techniques to enhance spectral data quality and 
reliability by reducing noise and unwanted artifacts. First, a 
review of the state-of-the-art was performed, and various 
processing algorithms, focusing on smoothing, normalization, 
and spectral derivatives, were identified. Then, a wavelength 
reference standard was captured using four medical HS systems 
(G_VNIR, H_VNIR, N_VNIR and N_NIR). Each processing 
method was applied to the data recorded by the different medical 
HS systems. The performance of these processing methods was 

assessed using RMSE to compare processed data with the 
wavelength reference standard, and the execution time of each 
algorithm was considered to assess practical feasibility and 
efficiency.  

Results highlight the effectiveness of certain processing 
techniques for each medical HS system. In terms of smoothing, 
the algorithms giving the best results were GAUSSIAN for 
G_VNIR, MOVMEDIAN for H_VNIR and N_VNIR and 
LOESS for N_NIR. The choice of smoothing algorithm varies 
across setups because of the different spectral sampling of HS 
camera employed. In terms of normalization, the SNV algorithm 
delivers optimal results across all medical HS systems, since it 
normalizes the scale and offset of the captured HS data which 
makes it more similar to the reference than the other algorithms. 
Furthermore, combining smoothing and normalization methods 
enhances performance, although different results are obtained 
for each medical HS system due to the non-optimized window 
size. Lastly, concerning spectral derivatives, FD performs better 
than SD, although none of them improves previous results since 
they enlarge the noise present on the data.  

Regarding execution times, most algorithms are executed 
within the range of 10  to 10  s. However, RLOWESS and 
RLOESS, characterized as slow smoothing algorithms, exhibit 
longer processing times (~ 40 s). Nevertheless, future work will 
focus on analysing the performance of these algorithms on GPU 
or FPGA platforms in order to improve the algorithm 
performance, targeting real-time applications. Thus, the times 
obtained in different platforms allow to compare the proposed 
solutions against each other while providing a guideline for 
estimating the time required to process a given amount of data 
and for determining the appropriate algorithm for any 
particular application. 

Despite the promising outcomes observed, our study has 
several limitations that require further attention. Concerning 
smoothing algorithms, optimizing the window size for noise 
reduction is necessary. Additionally, other processing 
algorithms should be considered to address spectral 
misalignment. Additionally, it is essential to acknowledge that 
the selection of evaluation metrics and benchmark datasets may 
impact result interpretation. Hence, further analysis using actual 
captured data is necessary to apply our findings to real-world 
HSI scenarios with increased complexity and variability. 
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