Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/135464
DC FieldValueLanguage
dc.contributor.authorQuintana Quintana, Laura-
dc.contributor.authorVega, Carlos-
dc.contributor.authorLeón, Raquel-
dc.contributor.authorSocorro Marrero, Guillermo V.-
dc.contributor.authorOrtega, Samuel-
dc.contributor.authorCallicó, Gustavo M.-
dc.date.accessioned2025-01-20T12:55:24Z-
dc.date.available2025-01-20T12:55:24Z-
dc.date.issued2024-
dc.identifier.isbn9798350380385-
dc.identifier.issn2639-3859-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/135464-
dc.description.abstractHyperspectral imaging (HSI) has gained prominence in medical diagnostics due to its ability to capture and analyse detailed spectral information beyond human visual capabilities. Processing of HSI data is essential to enhance subsequent analysis and ensure the accuracy of results by reducing noise and unwanted artifacts. This paper provides an overview of state-of-the-art processing methods for HSI data, focusing on smoothing, normalization, and spectral derivatives. The efficacy of these methods is evaluated using root mean square error (RMSE) to compare pre-processed data with wavelength reference standard, alongside execution time considerations. Results indicate that certain algorithms, such as smoothing based on moving average, standard normal variate, and first spectral derivatives, yield superior performance across different medical HSI systems. Additionally, combining these processing techniques further improves data fidelity to the wavelength reference standard. Overall, this study offers insights into optimal processing strategies for enhancing the accuracy and reliability of HSI data.-
dc.languageeng-
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial-
dc.relation.ispartof2024 27Th Euromicro Conference On Digital System Design, Dsd 2024-
dc.sourceProceedings - 2024 27th Euromicro Conference on Digital System Design, DSD 2024[EISSN ], p. 464-471, (Enero 2024)-
dc.subject3307 Tecnología electrónica-
dc.subject.otherHyperspectral Imaging-
dc.subject.otherNormalization-
dc.subject.otherProcessing Methods-
dc.subject.otherSmoothing-
dc.subject.otherSpectral Derivatives-
dc.titleAssessing Processing Strategies on Data from Medical Hyperspectral Acquisition Systems-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conferenceEuromicro Conference on Digital System Design. 27. 2024-
dc.identifier.doi10.1109/DSD64264.2024.00068-
dc.identifier.scopus85211944216-
dc.identifier.isi001414927800059-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58183363200-
dc.contributor.authorscopusid57743927600-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid57200512452-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56006321500-
dc.description.lastpage471-
dc.description.firstpage464-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages8-
dc.utils.revision-
dc.contributor.wosstandardWOS:Quintana-Quintana, L-
dc.contributor.wosstandardWOS:Vega, C-
dc.contributor.wosstandardWOS:Leon, R-
dc.contributor.wosstandardWOS:Socorro-Marrero, GV-
dc.contributor.wosstandardWOS:Ortega, S-
dc.contributor.wosstandardWOS:Callico, GM-
dc.date.coverdateEnero 2024-
dc.identifier.conferenceidevents155559-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1154-6490-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0003-2543-1571-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameQuintana Quintana, Laura-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameSocorro Marrero, Guillermo Valentín-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate30-05-2024-
crisitem.event.eventsenddate31-05-2024-
Appears in Collections:Actas de congresos
Unknown (1,36 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.