Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135230
Título: Enhancing Immunoglobulin G Goat Colostrum Determination Using Color-Based Techniques and Data Science
Autores/as: Betancor Sánchez, Manuel 
Gonzalez Cabrera, Marta 
Morales De La Nuez, Antonio José 
Hernández Castellano, Lorenzo Enrique 
Argüello Henríquez, Anastasio 
Castro Navarro, Noemí 
Clasificación UNESCO: 3104 Producción Animal
330909 Productos lácteos
230227 Proteínas
Palabras clave: colostrum
immunoglobulin G
machine learning
deep learning
decision trree, et al.
Fecha de publicación: 2025
Publicación seriada: Animals 
Resumen: Circulating immunoglobulin G (IgG) concentrations in newborn goat kids are not sufficient to protect the animal against external agents. Therefore, consumption of colostrum, rich in immune components, shortly after birth is crucial. Traditional laboratory methods used to measure IgG concentrations, such as ELISA or RID, are reliable but costly and impractical for many farmers. This study proposes a more accessible alternative for farmers to predict IgG concentration in goat colostrum by integrating color-based techniques with machine learning models, specifically decision trees and neural networks, through the development of two regression models based on colostrum color data from Majorera dairy goats. A total of 813 colostrum samples were collected in a previous study (June 1997–April 2003) that utilized multiple regression analysis as a reference to verify that applying data science techniques improves accuracy and reliability. The decision tree model outperformed the neural network, achieving higher accuracy and lower error rates. Both models provided predictions that closely matched IgG concentrations obtained by ELISA. Therefore, this methodology offers a practical and affordable solution for the on-farm assessment of colostrum quality (i.e., IgG concentration). This approach could significantly improve farm management practices, ensuring better health outcomes in newborn animals by facilitating timely and accurate colostrum quality evaluation.
URI: http://hdl.handle.net/10553/135230
ISSN: 2076-2615
DOI: https://doi.org/10.3390/ani15010031
Fuente: Animals[2076-2615], v.15(1)
Colección:Artículos
Adobe PDF (1,05 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.