Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/135230
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Betancor Sánchez, Manuel | en_US |
dc.contributor.author | Gonzalez Cabrera, Marta | en_US |
dc.contributor.author | Morales De La Nuez, Antonio José | en_US |
dc.contributor.author | Hernández Castellano, Lorenzo Enrique | en_US |
dc.contributor.author | Argüello Henríquez, Anastasio | en_US |
dc.contributor.author | Castro Navarro, Noemí | en_US |
dc.date.accessioned | 2025-01-02T11:15:36Z | - |
dc.date.available | 2025-01-02T11:15:36Z | - |
dc.date.issued | 2025 | en_US |
dc.identifier.issn | 2076-2615 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/135230 | - |
dc.description.abstract | Circulating immunoglobulin G (IgG) concentrations in newborn goat kids are not sufficient to protect the animal against external agents. Therefore, consumption of colostrum, rich in immune components, shortly after birth is crucial. Traditional laboratory methods used to measure IgG concentrations, such as ELISA or RID, are reliable but costly and impractical for many farmers. This study proposes a more accessible alternative for farmers to predict IgG concentration in goat colostrum by integrating color-based techniques with machine learning models, specifically decision trees and neural networks, through the development of two regression models based on colostrum color data from Majorera dairy goats. A total of 813 colostrum samples were collected in a previous study (June 1997–April 2003) that utilized multiple regression analysis as a reference to verify that applying data science techniques improves accuracy and reliability. The decision tree model outperformed the neural network, achieving higher accuracy and lower error rates. Both models provided predictions that closely matched IgG concentrations obtained by ELISA. Therefore, this methodology offers a practical and affordable solution for the on-farm assessment of colostrum quality (i.e., IgG concentration). This approach could significantly improve farm management practices, ensuring better health outcomes in newborn animals by facilitating timely and accurate colostrum quality evaluation. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Animals | en_US |
dc.source | Animals[2076-2615], v.15(1) | en_US |
dc.subject | 3104 Producción Animal | en_US |
dc.subject | 330909 Productos lácteos | en_US |
dc.subject | 230227 Proteínas | en_US |
dc.subject.other | colostrum | en_US |
dc.subject.other | immunoglobulin G | en_US |
dc.subject.other | machine learning | en_US |
dc.subject.other | deep learning | en_US |
dc.subject.other | decision trree | en_US |
dc.subject.other | neural network | en_US |
dc.subject.other | IgG prediction | en_US |
dc.title | Enhancing Immunoglobulin G Goat Colostrum Determination Using Color-Based Techniques and Data Science | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | https://doi.org/10.3390/ani15010031 | en_US |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-VET | en_US |
dc.description.sjr | 0,698 | |
dc.description.jcr | 3,0 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,5 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal | - |
crisitem.author.dept | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.dept | GIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal | - |
crisitem.author.dept | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.dept | GIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal | - |
crisitem.author.dept | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.dept | Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos | - |
crisitem.author.dept | GIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal | - |
crisitem.author.dept | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.dept | Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos | - |
crisitem.author.dept | GIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal | - |
crisitem.author.dept | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.dept | Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos | - |
crisitem.author.dept | GIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal | - |
crisitem.author.dept | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.dept | Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos | - |
crisitem.author.orcid | 0009-0009-1620-5530 | - |
crisitem.author.orcid | 0000-0002-9735-2162 | - |
crisitem.author.orcid | 0000-0002-0184-2037 | - |
crisitem.author.orcid | 0000-0003-2729-0434 | - |
crisitem.author.orcid | 0000-0002-4426-0678 | - |
crisitem.author.orcid | 0000-0002-3026-2031 | - |
crisitem.author.parentorg | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.parentorg | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.parentorg | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.parentorg | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.parentorg | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.parentorg | IU de Sanidad Animal y Seguridad Alimentaria | - |
crisitem.author.fullName | Betancor Sánchez, Manuel | - |
crisitem.author.fullName | Gonzalez Cabrera, Marta | - |
crisitem.author.fullName | Morales De La Nuez, Antonio José | - |
crisitem.author.fullName | Hernández Castellano, Lorenzo Enrique | - |
crisitem.author.fullName | Argüello Henríquez, Anastasio | - |
crisitem.author.fullName | Castro Navarro, Noemí | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.