Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135230
Campo DC Valoridioma
dc.contributor.authorBetancor Sánchez, Manuelen_US
dc.contributor.authorGonzalez Cabrera, Martaen_US
dc.contributor.authorMorales De La Nuez, Antonio Joséen_US
dc.contributor.authorHernández Castellano, Lorenzo Enriqueen_US
dc.contributor.authorArgüello Henríquez, Anastasioen_US
dc.contributor.authorCastro Navarro, Noemíen_US
dc.date.accessioned2025-01-02T11:15:36Z-
dc.date.available2025-01-02T11:15:36Z-
dc.date.issued2025en_US
dc.identifier.issn2076-2615en_US
dc.identifier.urihttp://hdl.handle.net/10553/135230-
dc.description.abstractCirculating immunoglobulin G (IgG) concentrations in newborn goat kids are not sufficient to protect the animal against external agents. Therefore, consumption of colostrum, rich in immune components, shortly after birth is crucial. Traditional laboratory methods used to measure IgG concentrations, such as ELISA or RID, are reliable but costly and impractical for many farmers. This study proposes a more accessible alternative for farmers to predict IgG concentration in goat colostrum by integrating color-based techniques with machine learning models, specifically decision trees and neural networks, through the development of two regression models based on colostrum color data from Majorera dairy goats. A total of 813 colostrum samples were collected in a previous study (June 1997–April 2003) that utilized multiple regression analysis as a reference to verify that applying data science techniques improves accuracy and reliability. The decision tree model outperformed the neural network, achieving higher accuracy and lower error rates. Both models provided predictions that closely matched IgG concentrations obtained by ELISA. Therefore, this methodology offers a practical and affordable solution for the on-farm assessment of colostrum quality (i.e., IgG concentration). This approach could significantly improve farm management practices, ensuring better health outcomes in newborn animals by facilitating timely and accurate colostrum quality evaluation.en_US
dc.languageengen_US
dc.relation.ispartofAnimalsen_US
dc.sourceAnimals[2076-2615], v.15(1)en_US
dc.subject3104 Producción Animalen_US
dc.subject330909 Productos lácteosen_US
dc.subject230227 Proteínasen_US
dc.subject.othercolostrumen_US
dc.subject.otherimmunoglobulin Gen_US
dc.subject.othermachine learningen_US
dc.subject.otherdeep learningen_US
dc.subject.otherdecision trreeen_US
dc.subject.otherneural networken_US
dc.subject.otherIgG predictionen_US
dc.titleEnhancing Immunoglobulin G Goat Colostrum Determination Using Color-Based Techniques and Data Scienceen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.3390/ani15010031en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-VETen_US
dc.description.sjr0,698
dc.description.jcr3,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,5
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUSA-ONEHEALTH 4. Producción y Biotecnología Animal-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.orcid0009-0009-1620-5530-
crisitem.author.orcid0000-0002-9735-2162-
crisitem.author.orcid0000-0002-0184-2037-
crisitem.author.orcid0000-0003-2729-0434-
crisitem.author.orcid0000-0002-4426-0678-
crisitem.author.orcid0000-0002-3026-2031-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.fullNameBetancor Sánchez, Manuel-
crisitem.author.fullNameGonzalez Cabrera, Marta-
crisitem.author.fullNameMorales De La Nuez, Antonio José-
crisitem.author.fullNameHernández Castellano, Lorenzo Enrique-
crisitem.author.fullNameArgüello Henríquez, Anastasio-
crisitem.author.fullNameCastro Navarro, Noemí-
Colección:Artículos
Adobe PDF (1,05 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.