Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/134970
DC FieldValueLanguage
dc.contributor.authorCruz-Guerrero, Inés A.en_US
dc.contributor.authorCampos Delgado, Daniel Ulisesen_US
dc.contributor.authorMejía-Rodríguez, Aldo R.en_US
dc.contributor.authorLeón Martín,Sonia Raquelen_US
dc.contributor.authorOrtega Sarmiento,Samuelen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorCamacho Galán, Rafaelen_US
dc.contributor.authorPlaza, Maria de la Luzen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.date.accessioned2024-12-11T10:15:59Z-
dc.date.available2024-12-11T10:15:59Z-
dc.date.issued2024en_US
dc.identifier.issn2053-3713en_US
dc.identifier.urihttp://hdl.handle.net/10553/134970-
dc.description.abstractHyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non-contact and non-invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification.en_US
dc.languageengen_US
dc.relationTalent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificialen_US
dc.relation.ispartofHealthcare Technology Lettersen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherbiomedical optical imagingen_US
dc.subject.otherimage classificationen_US
dc.subject.otherlearning (artificial intelligence)en_US
dc.subject.othermedical image processingen_US
dc.subject.otherneural netsen_US
dc.titleHybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1049/htl2.12084en_US
dc.identifier.scopus2-s2.0-85194492901-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-1555-0131-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue4-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,581
dc.description.sjrqQ3
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameCampos Delgado, Daniel Ulises-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameCamacho Galán, Rafael-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Adobe PDF (6,74 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.