Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/134970
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cruz-Guerrero, Inés A. | en_US |
dc.contributor.author | Campos Delgado, Daniel Ulises | en_US |
dc.contributor.author | Mejía-Rodríguez, Aldo R. | en_US |
dc.contributor.author | León Martín,Sonia Raquel | en_US |
dc.contributor.author | Ortega Sarmiento,Samuel | en_US |
dc.contributor.author | Fabelo Gómez, Himar Antonio | en_US |
dc.contributor.author | Camacho Galán, Rafael | en_US |
dc.contributor.author | Plaza, Maria de la Luz | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.date.accessioned | 2024-12-11T10:15:59Z | - |
dc.date.available | 2024-12-11T10:15:59Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 2053-3713 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/134970 | - |
dc.description.abstract | Hyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non-contact and non-invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification. | en_US |
dc.language | eng | en_US |
dc.relation | Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial | en_US |
dc.relation.ispartof | Healthcare Technology Letters | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | biomedical optical imaging | en_US |
dc.subject.other | image classification | en_US |
dc.subject.other | learning (artificial intelligence) | en_US |
dc.subject.other | medical image processing | en_US |
dc.subject.other | neural nets | en_US |
dc.title | Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1049/htl2.12084 | en_US |
dc.identifier.scopus | 2-s2.0-85194492901 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-1555-0131 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 4 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,581 | |
dc.description.sjrq | Q3 | |
dc.description.esci | ESCI | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-4287-3200 | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Campos Delgado, Daniel Ulises | - |
crisitem.author.fullName | León Martín,Sonia Raquel | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Camacho Galán, Rafael | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
crisitem.project.principalinvestigator | Marrero Callicó, Gustavo Iván | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.