Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/134970
Título: | Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks | Autores/as: | Cruz-Guerrero, Inés A. Campos Delgado, Daniel Ulises Mejía-Rodríguez, Aldo R. León Martín,Sonia Raquel Ortega Sarmiento,Samuel Fabelo Gómez, Himar Antonio Camacho Galán, Rafael Plaza, Maria de la Luz Marrero Callicó, Gustavo Iván |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | biomedical optical imaging image classification learning (artificial intelligence) medical image processing neural nets |
Fecha de publicación: | 2024 | Proyectos: | Talent Imágenes Hiperespectrales Para Aplicaciones de Inteligencia Artificial | Publicación seriada: | Healthcare Technology Letters | Resumen: | Hyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non-contact and non-invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification. | URI: | http://hdl.handle.net/10553/134970 | ISSN: | 2053-3713 | DOI: | 10.1049/htl2.12084 |
Colección: | Artículos |
Visitas
56
actualizado el 12-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.