Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/134969
Título: | Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imagery | Autores/as: | Cardona Mesa, Ahmed Alejandro Vasquez Salazar, Ruben Dario Gómez, Luis Travieso-González, Carlos M. Garavito-González, Andrés F. Vásquez-Cano, Esteban Díaz-Paz, Jean Pierre |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Deep Learning Sentinel Speckle Supervised Learning Synthetic Aperture Radar (Sar), et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Data in Brief | Resumen: | This article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four folders—SAR_VV, SAR_VH, RGB, and NDVI—each containing 2200 images with dimensions of 512 × 512 pixels. These images were collected from various global locations using random geographic coordinates and strict criteria for cloud cover, snow presence, and water percentage, ensuring high-quality and diverse data. The primary motivation for creating this dataset is to address the limitations of optical sensors, which are often hindered by cloud cover and atmospheric conditions. By integrating SAR data, which is unaffected by these factors, the dataset offers a robust tool for a wide range of applications, including land cover classification, vegetation monitoring, and environmental change detection. The dataset is particularly valuable for training machine learning models that require multimodal inputs, such as translating SAR images to optical imagery or enhancing the quality of noisy data. Additionally, the structure of the dataset and the preprocessing steps applied make it readily usable for various research purposes. The SAR images are processed to Level-1 Ground Range Detected (GRD) format, including radiometric calibration and terrain correction, while the optical images are filtered to ensure minimal cloud interference. | URI: | http://hdl.handle.net/10553/134969 | DOI: | 10.1016/j.dib.2024.111160 | Fuente: | Data in Brief[EISSN 2352-3409],v. 57, (Diciembre 2024) |
Colección: | Artículos |
Visitas
36
actualizado el 14-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.