Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134969
Campo DC Valoridioma
dc.contributor.authorCardona Mesa, Ahmed Alejandroen_US
dc.contributor.authorVasquez Salazar, Ruben Darioen_US
dc.contributor.authorGómez, Luisen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorGaravito-González, Andrés F.en_US
dc.contributor.authorVásquez-Cano, Estebanen_US
dc.contributor.authorDíaz-Paz, Jean Pierreen_US
dc.date.accessioned2024-12-11T10:13:01Z-
dc.date.available2024-12-11T10:13:01Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/134969-
dc.description.abstractThis article presents a comprehensive dataset combining Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission with optical imagery, including RGB and Normalized Difference Vegetation Index (NDVI), from the Sentinel-2 mission. The dataset consists of 8800 images, organized into four folders—SAR_VV, SAR_VH, RGB, and NDVI—each containing 2200 images with dimensions of 512 × 512 pixels. These images were collected from various global locations using random geographic coordinates and strict criteria for cloud cover, snow presence, and water percentage, ensuring high-quality and diverse data. The primary motivation for creating this dataset is to address the limitations of optical sensors, which are often hindered by cloud cover and atmospheric conditions. By integrating SAR data, which is unaffected by these factors, the dataset offers a robust tool for a wide range of applications, including land cover classification, vegetation monitoring, and environmental change detection. The dataset is particularly valuable for training machine learning models that require multimodal inputs, such as translating SAR images to optical imagery or enhancing the quality of noisy data. Additionally, the structure of the dataset and the preprocessing steps applied make it readily usable for various research purposes. The SAR images are processed to Level-1 Ground Range Detected (GRD) format, including radiometric calibration and terrain correction, while the optical images are filtered to ensure minimal cloud interference.en_US
dc.languageengen_US
dc.relation.ispartofData in Briefen_US
dc.sourceData in Brief[EISSN 2352-3409],v. 57, (Diciembre 2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherSentinelen_US
dc.subject.otherSpeckleen_US
dc.subject.otherSupervised Learningen_US
dc.subject.otherSynthetic Aperture Radar (Sar)en_US
dc.subject.otherVegetation Indexen_US
dc.titleDataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI imageryen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dib.2024.111160en_US
dc.identifier.scopus85210537355-
dc.contributor.orcid0000-0001-5263-2569-
dc.contributor.orcid0000-0002-1690-8393-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-4621-2768-
dc.contributor.orcid0009-0001-1839-404X-
dc.contributor.orcid0009-0001-5246-7644-
dc.contributor.orcid0000-0001-6833-6879-
dc.contributor.authorscopusid58544725400-
dc.contributor.authorscopusid58544220200-
dc.contributor.authorscopusid56789548300-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid58705423800-
dc.contributor.authorscopusid58705409300-
dc.contributor.authorscopusid57217181133-
dc.identifier.eissn2352-3409-
dc.relation.volume57en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,208
dc.description.sjrqQ3
dc.description.esciESCI
dc.description.miaricds9,3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameCardona Mesa, Ahmed Alejandro-
crisitem.author.fullNameVasquez Salazar, Ruben Dario-
crisitem.author.fullNameGómez Déniz, Luis-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.