Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/134834
Título: | Applying Neural Networks to Recover Values of Monitoring Parameters for COVID-19 Patients in the ICU | Autores/as: | Celada Bernal, Sergio Pérez Acosta, Guillermo Travieso González, Carlos Manuel Blanco López, José Javier Santana-Cabrera, Luciano |
Clasificación UNESCO: | 120320 Sistemas de control médico 3307 Tecnología electrónica |
Palabras clave: | COVID-19 Data recovery ICU Neural networks Patients |
Fecha de publicación: | 2023 | Publicación seriada: | Mathematics | Resumen: | From the moment a patient is admitted to the hospital, monitoring begins, and specific information is collected. The continuous flow of parameters, including clinical and analytical data, serves as a significant source of information. However, there are situations in which not all values from medical tests can be obtained. This paper aims to predict the medical test values of COVID-19 patients in the intensive care unit (ICU). By retrieving the missing medical test values, the model provides healthcare professionals with an additional tool and more information with which to combat COVID-19. The proposed approach utilizes a customizable deep learning model. Three types of neural networks, namely Multilayer Perceptron (MLP), Long/Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), are employed. The parameters of these neural networks are configured to determine the model that delivers the optimal performance. Evaluation of the model’s performance is conducted using metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The application of the proposed model achieves predictions of the retrieved medical test values, resulting in RMSE = 7.237, MAPE = 5.572, and MAE = 4.791. Moreover, the article explores various scenarios in which the model exhibits higher accuracy. This model can be adapted and utilized in the diagnosis of future infectious diseases that share characteristics with Coronavirus Disease 2019 (COVID-19). | URI: | http://hdl.handle.net/10553/134834 | ISSN: | 2227-7390 | DOI: | 10.3390/math11153332 | Fuente: | Mathematics [ISSN 2227-7390], v. 11, 3332, (Julio 2023) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.