Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134834
Campo DC Valoridioma
dc.contributor.authorCelada Bernal, Sergioen_US
dc.contributor.authorPérez Acosta, Guillermoen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.contributor.authorBlanco López, José Javieren_US
dc.contributor.authorSantana-Cabrera, Lucianoen_US
dc.date.accessioned2024-11-26T18:02:31Z-
dc.date.available2024-11-26T18:02:31Z-
dc.date.issued2023en_US
dc.identifier.issn2227-7390en_US
dc.identifier.urihttp://hdl.handle.net/10553/134834-
dc.description.abstractFrom the moment a patient is admitted to the hospital, monitoring begins, and specific information is collected. The continuous flow of parameters, including clinical and analytical data, serves as a significant source of information. However, there are situations in which not all values from medical tests can be obtained. This paper aims to predict the medical test values of COVID-19 patients in the intensive care unit (ICU). By retrieving the missing medical test values, the model provides healthcare professionals with an additional tool and more information with which to combat COVID-19. The proposed approach utilizes a customizable deep learning model. Three types of neural networks, namely Multilayer Perceptron (MLP), Long/Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), are employed. The parameters of these neural networks are configured to determine the model that delivers the optimal performance. Evaluation of the model’s performance is conducted using metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The application of the proposed model achieves predictions of the retrieved medical test values, resulting in RMSE = 7.237, MAPE = 5.572, and MAE = 4.791. Moreover, the article explores various scenarios in which the model exhibits higher accuracy. This model can be adapted and utilized in the diagnosis of future infectious diseases that share characteristics with Coronavirus Disease 2019 (COVID-19).en_US
dc.languageengen_US
dc.relation.ispartofMathematicsen_US
dc.sourceMathematics [ISSN 2227-7390], v. 11, 3332, (Julio 2023)en_US
dc.subject120320 Sistemas de control médicoen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherCOVID-19en_US
dc.subject.otherData recoveryen_US
dc.subject.otherICUen_US
dc.subject.otherNeural networksen_US
dc.subject.otherPatientsen_US
dc.titleApplying Neural Networks to Recover Values of Monitoring Parameters for COVID-19 Patients in the ICUen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math11153332en_US
dc.identifier.scopus2-s2.0-85167625332-
dc.contributor.orcid0000-0002-6078-2716-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-4621-2768-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0001-8310-1197-
dc.identifier.issue15-
dc.relation.volume11en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.orcid0000-0002-6078-2716-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameCelada Bernal, Sergio-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameBlanco López, José Javier-
Colección:Artículos
Adobe PDF (3,01 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.