Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134750
Campo DC Valoridioma
dc.contributor.authorAmoakoh, Alex Owusuen_US
dc.contributor.authorAplin, Paulen_US
dc.contributor.authorRodríguez-Veiga, Pedroen_US
dc.contributor.authorMoses, Cherithen_US
dc.contributor.authorPeña Alonso, Carolina Priscilaen_US
dc.contributor.authorCortés, Joaquín A.en_US
dc.contributor.authorDelgado-Fernandez, Ireneen_US
dc.contributor.authorKankam, Stephenen_US
dc.contributor.authorMensah, Justice Camillusen_US
dc.contributor.authorNortey, Daniel Doku Niien_US
dc.date.accessioned2024-11-19T17:58:07Z-
dc.date.available2024-11-19T17:58:07Z-
dc.date.issued2024en_US
dc.identifier.issn2072-4292en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/134750-
dc.description.abstractThe Greater Amanzule Peatlands (GAP) in Ghana is an important biodiversity hotspot facing increasing pressure from anthropogenic land-use activities driven by rapid agricultural plantation expansion, urbanisation, and the burgeoning oil and gas industry. Accurate measurement of how these pressures alter land cover over time, along with the projection of future changes, is crucial for sustainable management. This study aims to analyse these changes from 2010 to 2020 and predict future scenarios up to 2040 using multi-source remote sensing and machine learning techniques. Optical, radar, and topographical remote sensing data from Landsat-7, Landsat-8, ALOS/PALSAR, and Shuttle Radar Topography Mission derived digital elevation models (DEMs) were integrated to perform land cover change analysis using Random Forest (RF), while Cellular Automata Artificial Neural Networks (CA-ANNs) were employed for predictive modelling. The classification model achieved overall accuracies of 93% in 2010 and 94% in both 2015 and 2020, with weighted F1 scores of 80.0%, 75.8%, and 75.7%, respectively. Validation of the predictive model yielded a Kappa value of 0.70, with an overall accuracy rate of 80%, ensuring reliable spatial predictions of future land cover dynamics. Findings reveal a 12% expansion in peatland cover, equivalent to approximately 6570 ± 308.59 hectares, despite declines in specific peatland types. Concurrently, anthropogenic land uses have increased, evidenced by an 85% rise in rubber plantations (from 30,530 ± 110.96 hectares to 56,617 ± 220.90 hectares) and a 6% reduction in natural forest cover (5965 ± 353.72 hectares). Sparse vegetation, including smallholder farms, decreased by 35% from 45,064 ± 163.79 hectares to 29,424 ± 114.81 hectares. Projections for 2030 and 2040 indicate minimal changes based on current trends; however, they do not consider potential impacts from climate change, large-scale development projects, and demographic shifts, necessitating cautious interpretation. The results highlight areas of stability and vulnerability within the understudied GAP region, offering critical insights for developing targeted conservation strategies. Additionally, the methodological framework, which combines optical, radar, and topographical data with machine learning, provides a robust approach for accurate and detailed landscape-scale monitoring of tropical peatlands that is applicable to other regions facing similar environmental challenges.en_US
dc.languageengen_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [EISSN 2072-4292],v. 16 (21), (Octubre 2024)en_US
dc.subject250501 Biogeografíaen_US
dc.subject.otherEnvironmental Conservationen_US
dc.subject.otherLand Cover Dynamicsen_US
dc.subject.otherMachine Learning Classificationen_US
dc.subject.otherModellingen_US
dc.subject.otherPeatlandsen_US
dc.subject.otherRemote Sensingen_US
dc.titlePredictive Modelling of Land Cover Changes in the Greater Amanzule Peatlands Using Multi-Source Remote Sensing and Machine Learning Techniquesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs16214013en_US
dc.identifier.scopus85208462719-
dc.contributor.orcid0000-0001-8394-1241-
dc.contributor.orcid0000-0002-9394-5630-
dc.contributor.orcid0000-0003-4845-4215-
dc.contributor.orcid0000-0001-7222-9486-
dc.contributor.orcid0000-0002-8589-0553-
dc.contributor.orcid0000-0003-0062-6954-
dc.contributor.orcid0000-0001-8101-0670-
dc.contributor.orcid0000-0002-6479-5928-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57223371564-
dc.contributor.authorscopusid6701865572-
dc.contributor.authorscopusid25961216600-
dc.contributor.authorscopusid7004646988-
dc.contributor.authorscopusid57679745800-
dc.contributor.authorscopusid8840435300-
dc.contributor.authorscopusid32667474400-
dc.contributor.authorscopusid34868238600-
dc.contributor.authorscopusid57209328203-
dc.contributor.authorscopusid57209386116-
dc.identifier.eissn2072-4292-
dc.identifier.issue21-
dc.relation.volume16en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Artículoen_US
dc.description.numberofpages30en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-HUMen_US
dc.description.sjr1,091
dc.description.jcr5,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Geografía, Medio Ambiente y Tecnologías de la Información Geográfica-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Geografía-
crisitem.author.orcid0000-0002-8589-0553-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNamePeña Alonso, Carolina Priscila-
Colección:Artículos
Adobe PDF (11,78 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.