
Citation: Amoakoh, A.O.; Aplin, P.;

Rodríguez-Veiga, P.; Moses, C.;

Alonso, C.P.; Cortés, J.A.;

Delgado-Fernandez, I.; Kankam, S.;

Mensah, J.C.; Nortey, D.D.N.

Predictive Modelling of Land Cover

Changes in the Greater Amanzule

Peatlands Using Multi-Source Remote

Sensing and Machine Learning

Techniques. Remote Sens. 2024, 16,

4013. https://doi.org/10.3390/

rs16214013

Academic Editor: Andy Hardy

Received: 26 August 2024

Revised: 24 October 2024

Accepted: 25 October 2024

Published: 29 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Predictive Modelling of Land Cover Changes in the Greater
Amanzule Peatlands Using Multi-Source Remote Sensing and
Machine Learning Techniques
Alex Owusu Amoakoh 1,* , Paul Aplin 2 , Pedro Rodríguez-Veiga 3,4 , Cherith Moses 1 ,
Carolina Peña Alonso 5 , Joaquín A. Cortés 1 , Irene Delgado-Fernandez 6 , Stephen Kankam 7 ,
Justice Camillus Mensah 7 and Daniel Doku Nii Nortey 7

1 Department of History, Geography and Social Sciences, Edge Hill University, Ormskirk L39 4QP, UK;
mosesc@edgehill.ac.uk (C.M.); joaquin.cortes@edgehill.ac.uk (J.A.C.)

2 Department of Geography, Mary Immaculate College, V94 VN26 Limerick, Ireland; paul.aplin@mic.ul.ie
3 Sylvera Ltd., London N1 7SR, UK; pedro@sylvera.io
4 School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
5 Grupo de Geografía, Medio Ambiente y Tecnologías de la Información Geográfica, Instituto de Oceanografía

y Cambio Global, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas, Spain;
carolina.pena@ulpgc.es

6 Earth Sciences Department, Faculty of Marine and Environmental Sciences (INMAR), University of Cadiz,
11001 Cadiz, Spain; irene.delgado@uca.es

7 Hen Mpoano (Our Coast), Takoradi WS-289-9503, Ghana; skankam@henmpoano.org (S.K.);
jmensah@henmpoano.org (J.C.M.); dnortey@henmpoano.org (D.D.N.N.)

* Correspondence: lexizamoako@yahoo.com

Abstract: The Greater Amanzule Peatlands (GAP) in Ghana is an important biodiversity hotspot
facing increasing pressure from anthropogenic land-use activities driven by rapid agricultural planta-
tion expansion, urbanisation, and the burgeoning oil and gas industry. Accurate measurement of
how these pressures alter land cover over time, along with the projection of future changes, is crucial
for sustainable management. This study aims to analyse these changes from 2010 to 2020 and predict
future scenarios up to 2040 using multi-source remote sensing and machine learning techniques.
Optical, radar, and topographical remote sensing data from Landsat-7, Landsat-8, ALOS/PALSAR,
and Shuttle Radar Topography Mission derived digital elevation models (DEMs) were integrated to
perform land cover change analysis using Random Forest (RF), while Cellular Automata Artificial
Neural Networks (CA-ANNs) were employed for predictive modelling. The classification model
achieved overall accuracies of 93% in 2010 and 94% in both 2015 and 2020, with weighted F1 scores
of 80.0%, 75.8%, and 75.7%, respectively. Validation of the predictive model yielded a Kappa value
of 0.70, with an overall accuracy rate of 80%, ensuring reliable spatial predictions of future land
cover dynamics. Findings reveal a 12% expansion in peatland cover, equivalent to approximately
6570 ± 308.59 hectares, despite declines in specific peatland types. Concurrently, anthropogenic land
uses have increased, evidenced by an 85% rise in rubber plantations (from 30,530 ± 110.96 hectares
to 56,617 ± 220.90 hectares) and a 6% reduction in natural forest cover (5965 ± 353.72 hectares).
Sparse vegetation, including smallholder farms, decreased by 35% from 45,064 ± 163.79 hectares to
29,424 ± 114.81 hectares. Projections for 2030 and 2040 indicate minimal changes based on current
trends; however, they do not consider potential impacts from climate change, large-scale develop-
ment projects, and demographic shifts, necessitating cautious interpretation. The results highlight
areas of stability and vulnerability within the understudied GAP region, offering critical insights for
developing targeted conservation strategies. Additionally, the methodological framework, which
combines optical, radar, and topographical data with machine learning, provides a robust approach
for accurate and detailed landscape-scale monitoring of tropical peatlands that is applicable to other
regions facing similar environmental challenges.
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1. Introduction

In an era characterised by the escalating ramifications of global climate change, includ-
ing severe weather events and species extinction, the management of peatland emerges as a
pivotal concern [1]. Peatlands are unique ecosystems formed in waterlogged environments
where slow decomposition of plant material leads to the accumulation of peat, a dense
organic matter [2]. Such accumulations, often extending over millennia, establish them
as significant carbon sinks, playing an essential role in climate change mitigation efforts.
Globally, they are estimated to hold 650 billion tonnes of carbon on 3% of the Earth’s land
surface, which is equivalent to more than half of the carbon in the atmosphere or the carbon
stored by Earth’s vegetation [1]. They also provide a wide range of ecosystem services
including water purification, flood mitigation, biodiversity conservation, and the provision
of a landscape with cultural, recreational, and livelihood values [3–5].

Despite their importance, peatlands face significant threats from anthropogenic land-
use changes, including logging, agricultural expansion, plantation development, urban
and industrial expansion, deforestation, drainage, and accidental burning [6–9]. These
activities contribute to the destruction of approximately 500,000 hectares of peatlands
annually [10,11]. The United Nations Environment Programme [6] reports that the current
rate of loss and degradation of healthy peatland is ten times faster than the rate of expansion
over the last 10,000 years. It is noted that around 12% of the estimated 500,000,000 ha
of global peatlands are severely degraded to the extent that peat formation has ceased,
leading to carbon stock losses [6]. Such land-use modifications decrease biodiversity and
transform peatlands into net sources of greenhouse gases (GHGs), accelerating carbon
dioxide emissions from drained peat soils [5]. They also trigger losses in hydrological
integrity and peat subsidence, amplifying the risk of flooding and altering nutrient storage
and cycling dynamics [12].

For the sustainable management of the remaining peatlands, enhancing our under-
standing of fundamental variables such as their spatial distribution, extent, changes over
time, and future trends is crucial. However, significant uncertainties persist regarding
these variables, particularly in tropical regions [13–15]. Historically, peatland research has
been predominantly focused on boreal and temperate zones, leaving tropical peatlands
comparatively underexplored [14,15]. Although the past two decades have seen a surge
in tropical peatland studies, most have concentrated on Southeast Asia, which hosts an
estimated 56% of tropical peatlands [4,16]. In contrast, African peatlands remain largely un-
derstudied, with uncertainties as to their extent, land cover dynamics, and future scenarios.
For instance, the Congo Basin peatlands were recently estimated to cover approximately
14.55 million hectares and store around 30.6 billion tonnes of carbon [13]. Subsequent
research revised their extent to 16.76 million hectares [17]. This significant adjustment
confirms the uncertainties and knowledge gaps that exist, especially in Africa. In Ghana,
the Greater Amanzule Peatlands (GAP) have been identified as a significant biodiversity
hotspot experiencing rapid development due to agricultural plantation expansion, urban-
isation, and the burgeoning oil and gas industry [18–21]. Since the onset of oil and gas
activities in 2011, these pressures have intensified, threatening the peatland’s ecological
integrity and the ecosystem services it provides [19]. This underscores the urgent need for
accurate land cover information and predictive modelling to inform effective management
and conservation strategies for tropical peatlands like the GAP.

Methodologically, optical data from medium spatial resolution sensors such as Sentinel-
2 (10 m multispectral imagery) and Landsat (30 m multispectral imagery) have been the
primary and most effective tools for peatland change analysis (e.g., [6,8,22–24]), owing to
their spectral detail and availability. However, this approach is constrained by frequent
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cloud cover in tropical regions, which hampers consistent observation. Recent classification
approaches increasingly favour the integration of data from multiple sensors for improved
landscape characterisation (e.g., [25–29]), particularly the integration of radar data such as
that of the Synthetic Aperture Radar (SAR), which can penetrate cloud cover and provide
reliable data under all weather conditions. This complementarity of optical and radar data
enhances the potential for fine-scale peatland mapping in equatorial zones where cloud
cover is a persistent challenge.

In parallel, the development of free and open-source software packages and the avail-
ability of increased computational power have significantly facilitated image analysis. This,
in turn, has expanded the application of machine learning (ML) algorithms in land cover
change analysis [30]. ML algorithms, such as Random Forest (RF), Support Vector Machine
(SVM), and Artificial Neural Networks (ANNs), offer robust classification capabilities,
particularly in heterogeneous landscapes like tropical peatlands (e.g., [11,14,31–33]). By
leveraging multi-source remote sensing data, these algorithms can capture subtle spectral
and textural differences, enhancing land cover classification accuracy and supporting the
prediction of future land-use scenarios.

Despite these advancements, few studies have applied these techniques to African
peatlands, limiting the ability to monitor land cover changes over time and project future
scenarios, both of which are crucial for informed conservation and land management
decisions. The use of multi-source data fusion and machine learning in the study of African
peatlands, such as the GAP, provides an opportunity to address these challenges and
contribute to a better understanding of tropical peatland dynamics in under-researched
regions. This study contributes to this emerging field by integrating data from multiple
sensors with advanced machine learning models to analyse land cover changes and provide
robust predictions of future land cover scenarios in the GAP. Specifically, we (1) utilise RF
to classify and detect land cover changes in the GAP from 2010 to 2020 (including 2015 as
a key observation point), using combined optical, radar, and digital elevation data, and
(2) predict future land cover scenarios up to 2040 with Cellular Automata Artificial Neural
Networks (CA-ANN). The year 2010 served as a baseline before the onset of oil and gas
activities in GAP, which began in 2011 [19]. The year 2015 allowed for the observation of
land cover changes five years into these activities, while 2020 provided insight into land
cover alterations a decade later, particularly following the emergence of small-scale gold
mining activities in 2016.

2. Methodology
2.1. Study Area

GAP is in the Western Region (WR) of Ghana (Figure 1a). It spans the Coastal savanna
and Rainforest zones of Ghana (Figure 1a) and traverses the four coastal districts of Jomoro,
Ellembele, Ahanta West, and Nzema East (Figure 1b). The terrain predominantly consists
of swampy lowlands and slightly elevated areas, with heights ranging from 0 to 196 metres
above sea level (Figure 2).

The peatland’s hydrology is characterised by a network of small, interconnected wa-
tercourses and tributaries that flow into the three major river bodies in the area—Amanzule
River, River Ankobra, and the Tano River (Figure 2)—ultimately discharging into the Gulf
of Guinea [34]. The hydrological processes are influenced by tidal fluctuations, rainfall, and
groundwater dynamics, which collectively contribute to the formation and maintenance of
the peat deposits [35].

The climate of the GAP is tropical wet, with an average annual precipitation of
approximately 1500 mm and relative humidity of 87.5% [35]. The area has two rainy
seasons: a major rainy season from April to July, and a minor rainy season from September
to November. The dry season occurs from December to March, with the Harmattan
winds bringing cooler, drier air from the northeast. Mean annual temperatures range from
24 ◦C to 28 ◦C, with slight variations due to the influences of the Gulf of Guinea and the
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various water bodies. These climatic variations may have implications for the hydrological
processes and ecosystem dynamics, affecting the peatland’s structure and function [34].

Biodiversity assessment within the area has identified 400 species, of which 41 are
presently recognised as threatened according to the International Union for Conservation
of Nature (IUCN) Red List criteria [36,37].

Figure 1. Study area map: (a) agro-ecological zones and the regional administrative boundaries
of Ghana; (b) identified patchy peatlands and communities fringing them, as well as the district
administrative boundaries in the GAP. Peatland information was obtained from Hen Mpoano’s
data repository and is based on participatory GIS and ground truthing approach. Basemap: Google
Hybrid, Map data (© 2023 Google).

Figure 2. Digital elevation model (DEM) of the study area showing the Amanzule, Tano, and Ankobra
rivers. The colour gradients represent variations in terrain elevation, with the scale indicating relative
heights in meters above sea level (Source: authors’ own creation using SRTM-derived DEM data
accessed via Google Earth Engine).

2.2. Land Cover and Classification Scheme

Classifying tropical landscapes from remote sensing data is complex due to structural
complexity, high heterogeneity, and the absence of a universal classification scheme for peat-
lands [14,15]. Therefore, defining appropriate thematic classes based on the characteristics
of the study area and technical specifications of the imagery is important. A classification
system was adopted based on extensive field observations of the study area and a careful
study of relevant literature [6,15,38,39]. Peatland classes were adapted from the study of
Lawson et al. [15], due to its detailed and comprehensive classification of peatland ecosys-
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tems, which mirrors the diversity found within the study area. The adapted categories
comprised mangrove swamp, mixed swamp, palm swamp, and bog plain; plantation
comprised coconut, rubber, and oil palm; and artificial and bare classes included built-up
land and bare surfaces, respectively. Other classes included sparse vegetation, natural
forest, and water. In total, twelve classes were identified (Table 1).

Table 1. Land cover classification scheme based on Lawson et al. [15].

General Class Land Cover Class Class Description

Peatland

Mangrove swamp Mangrove cover along coastal areas, predominantly composed of species such as
Rhizophora and Avicennia

Mixed swamp Permanent and regularly flooded broadleaved trees and palm (Raphia sp.)
Palm swamp Permanent and regularly flooded areas of palm (predominantly Raphia sp.)
Bog plain Areas dominated by permanent and regularly flooded areas of grasses

Forest Natural forest Closed broadleaved evergreen forest with trees from medium to large sizes

Sparse Sparse vegetation Areas of sparse and/or stunted plant growth including other agricultural lands
(i.e., young plantation trees, rainfed croplands)

Plantation
Coconut Plantation of mature coconut trees
Rubber Plantation of mature rubber trees
Oil palm Plantation of mature oil palm trees

Artificial and bare areas Built-up Developed land such as buildings, asphalt roads and concrete surfaces, human
settlements, and industrial facilities

Bare surface Areas of exposed soil or ground, open areas devoid of trees, grass, or other
vegetation; often comprising land cleared for development

Hydrology Water Water bodies such as rivers, canals, lakes, and sea

2.3. Data
2.3.1. Satellite Imagery

A combination of optical, radar, and SRTM-derived DEM was used for the land cover
classification (Table 2; Figure 3). This multi-source approach was adopted to enhance
the accuracy of the land cover change analysis by leveraging the strengths of each data
type [39]. All data were downloaded and processed using Google Earth Engine (GEE), a
freely available machine learning and cloud computing platform capable of handling large
datasets and having a comprehensive collection of preprocessed satellite imagery [40].

Figure 3. Workflow for land cover change analysis using multi-sensor data, featuring model building
with Random Forest (RF) classification, feature optimisation through Recursive Feature Elimination
(RFE), and GIS-based land cover projection.
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Optical data were sourced from Landsat-7 and Landsat-8 Collection-1 Tier-1 calibrated
top-of-atmosphere (TOA) reflectance products [40]. TOA data provided a more complete
and consistent dataset across the time points of interest, ensuring broader temporal and
spatial coverage. Given that this study focuses on land cover classification rather than direct
spectral comparison over time, the use of TOA data was appropriate as each image was
classified independently, reducing the impact of atmospheric correction on the classification
outcomes. Additionally, the accuracy of each land cover map was rigorously assessed prior
to conducting change detection analysis, ensuring the reliability of the final outputs.

ALOS/PALSAR and ALOS-2/PALSAR-2 satellites provided L-band Synthetic Aper-
ture Radar (SAR) mosaic datasets [41]. SAR is important for its all-weather observation
capability, especially relevant in the tropics where cloud cover can significantly hinder
optical data acquisition. SAR’s ability to penetrate cloud cover ensures the collection of
consistent and reliable data across all seasons [41,42]. The SAR data had a spatial resolution
of 25 m and included both horizontal transmit–horizontal receive (HH) and horizontal
transmit–vertical receive (HV) polarisations [41]. To ensure the accuracy of the backscat-
tering coefficient layers, JAXA has preprocessed them using their Sigma-SAR processor,
which involved radiometric and geometric calibration, ortho-rectification, slope correc-
tion, co-registration, and intensity tuning of neighbouring strip data before ingesting into
GEE [43]. This preprocessing step is also important for minimising errors and ensuring
data consistency [41].

Additionally, terrain features from SRTM-derived DEM at 30 m resolution were in-
corporated as ancillary data to account for the influence of topography on land cover
distribution. DEM data add valuable contextual information to the analysis, enabling a
more comprehensive understanding of the factors driving land cover changes [44].

The Landsat and L-Band SAR images were acquired for the years 2010, 2015, and 2020,
corresponding to a decade of land cover observation. These years were selected based on
the availability of cloud-free remote sensing data, allowing for consistent and comparable
analysis over time. The selected time frame provided an adequate temporal range for
observing changes in land cover patterns.

Table 2. Satellite remote sensing data used for the land cover change analysis of the GAP.

Data Type Satellite
/Source

Description Collection
Periods

Advantages Source

Multispectral op-
tical

Landsat-7 and -8 TOA reflectance
products

2010, 2015,
2020

Consistent coverage,
enables detection of
land cover changes
over time [45,46]

U.S. geological sur-
vey

Synthetic aper-
ture radar (SAR)

ALOS/
PALSAR and
ALOS-2/PALSAR-
2

L-Band SAR mosaic
datasets

2010, 2015,
2020

Penetrates clouds,
all-weather observa-
tions [41,42]

Japan Aerospace
Exploration Agency
(JAXA)

Digital elevation
model (DEM)

SRTM-derived
DEM

Elevation data 2000 (used as
ancillary data)

Provides contextual in-
formation on topogra-
phy [44]

U.S. geological sur-
vey

2.3.2. Reference Data

A combination of visual interpretation of very high-resolution imagery available
in Google Earth Pro and field survey was employed to obtain the reference data. Prior
information, including peatland inventory maps and pre-existing land cover classifica-
tion [14,20,21,37], guided the establishment of strata [14], ensuring representative sampling
across the varied landscape. To ensure accuracy, stakeholders who have extensive experi-
ence and familiarity with the landscape were involved in the visual interpretation process
as their expertise contributed to a better understanding of the ground conditions. This



Remote Sensing 2024, 16, 4013 7 of 30

approach enhanced the representativeness of the reference data, accurately reflecting the
different land cover types in the study area.

Reference data were represented as polygon features, which were then used to extract
image pixels for training the classifier. This approach has been found to produce better
classification outcomes than other methods, such as points (single pixels), point buffers
(average pixel values), and image objects (area statistics) [47,48]. For the 2010, 2015, and
2020 image analyses, a total of 26,000, 25,700, and 30,000 image pixels were extracted as
reference data, respectively. Of these reference data, 30% were randomly selected per class
and set aside for testing. Image statistics were obtained based on the Landsat, L-Band
SAR, and DEM image stack using the corresponding region of interest. Reflectance plots
were constructed to visualise the distributions of reflectance per land cover type against
each optical band (see Supplementary Figure S1). This approach ensured that the land
cover classification scheme was grounded in both visual interpretation and quantitative
analysis, leading to a more accurate and robust representation of the study area’s land
cover characteristics [49,50].

2.4. Preparation of Image Features

Annual composite images for the years 2010, 2015, and 2020 were generated from
Landsat data using pixel-based compositing in Google Earth Engine (GEE). A median
composite approach was employed to minimise the impact of outliers such as clouds and
shadows, ensuring a representative depiction of surface conditions [27,45,51]. Pixel-based
compositing also mitigated challenges such as insufficient data, pervasive cloud cover,
disruptions in the image archive, atmospheric disturbances, and variations in radiometric
readings due to seasonal transitions or changes in solar angles [52–54]. Cloud and shadow
masking was performed using the CFMask algorithm to exclude affected pixels prior to
applying the median filter. Given the persistent cloud cover in tropical regions, helper
images from adjacent periods (±1 year) were utilised when insufficient cloud-free scenes
resulted in data gaps for the target year [55,56]. In the case of 2010, Landsat-5 data from
2009 to 2011 were incorporated as helper data to address significant gaps caused by both
cloud masking and the scan line corrector (SLC) failure in Landsat-7 imagery. To ensure
the final image was consistent, we calibrated the reflectance values between Landsat-
5 and Landsat-7 by applying a scaling process, ensuring that the combined data were
radiometrically aligned and suitable for analysis. Temporal changes between consecutive
years were assumed to be minimal, and the use of a median compositing method further
mitigated potential inconsistencies. The number of scenes used per year varied between 53
and 65, ensuring adequate spatial and temporal coverage despite atmospheric conditions.
For the radar data, the digital numbers (DN) were first converted to power-scaled intensity
values. Subsequently, a Refined Lee filter was applied to each channel (HH, HV) to reduce
speckle noise. These values were then converted to sigma–naught (σ0) values, ensuring
consistent and comparable backscatter values [41,57].

To ensure spatial resolution consistency across datasets, the radar data (25 m) were
resampled to 30 m to align with the optical and DEM data. This was achieved using a
bilinear interpolation method, which maintains the spatial characteristics of the radar data
while aligning it with the optical data [58]. This approach helps to reduce potential errors
or biases that could result from differing spatial resolutions [14,47].

After these preprocessing steps, we calculated a series of indices highlighting green-
ness, moisture, soil properties, and structural variations of the landscape to increase the
utility of the spectral and radar information contained in the original image bands (Table 3).
These indices are derived from the arithmetic combination of spectral reflectance measure-
ments from Landsat imagery and backscatter coefficients from the SAR channels. Indices
exhibit high correlation with vegetation characteristics such as phenology, biomass, mois-
ture content, and leaf area index (LAI) [50,59], providing a comprehensive assessment of the
ecological state of the landscape. To augment the analysis, texture features were extracted
using the grey-level co-occurrence matrix (GLCM) from the SAR data. This texture analysis
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focused on the radar backscatter to discern the structural variations within the landscape,
offering insights into the physical arrangement and condition of the vegetation and other
surface features. Texture metrics included contrast (CON), dissimilarity (DIS), inverse dif-
ference moment (IDM), angular second moment (ASM), mean (SAVG), correlation (COR),
entropy (ENT), and variance (VAR). These metrics capitalise on SAR’s unique ability to
reflect the geometrical and structural properties of surface elements, enriching the land
cover analysis with a level of detail unattainable through spectral data alone. The size of the
neighbourhood included in each GLCM was set to 4, and the kernel size was 3 × 3 square
using the ‘glcmTexture’ function in GEE. The choice of kernel size followed literature in
similar contexts [27,39,45].

Terrain features were generated from the SRTM-derived DEM data using the Terrain
Analysis in Google Earth Engine (TAGEE) package [60]. The TAGEE package consists of
a multi-band image containing the same data properties as the digital elevation model
(resolution, data type, and coordinate reference system), with 13 bands (Table 3). Utilising
all the terrain attributes of the package ensures a comprehensive analysis of the study area
and provides the opportunity to test the relative importance of the features for tropical
peatland (TP) delineation.

In total, 21 optical features, 28 radar features, and 13 terrain features served as input
data in the machine learning model and analysis workflow (Table 3; Figure 3).

Table 3. Initial image features serving as potential predictors.

Datasets Features Description Number of Fea-
tures

Optical
Red, Green, Blue, NIR, SWIR1, SWIR2, GNDVI,
MSAVI2, NDWI, EVI, NDVI, GEMI, ARVI,
NBR, LSWI, VSSI, NBR2, NDSI, BI, SI, SAVI

Spectral bands and indices for vegetation
(Normalised Difference Vegetation Index; En-
hanced Vegetation Index; Green Normalised
Difference Vegetation Index; Modified Soil-
Adjusted Vegetation Index 2; Soil Adjusted
Vegetation Index; Global Environmental Mon-
itoring Index; Atmospherically Resistant Vege-
tation Index), water content (Normalised Dif-
ference Water Index; Land Surface Water In-
dex), and soil and structural properties (Nor-
malised Burn Ratio; Normalised Burn Ratio 2;
Normalised Difference Salinity Index; Bright-
ness Index; Salinity Index; Vegetation Soil
Salinity Index), enhancing landscape charac-
terisation.

21

Radar

HH_savg, HH_contrast, HV_contrast, HV_diss,
HH_idm, HV_idm, HH_corr, HH_amp,
HV_amp, HV_corr, HH_ent, HV_asm,
HH_asm, HV_var, HH_diss, NDI, HV_stdDev,
Diff, R1, R2, HV_savg, NLI, HH, HH_stdDev,
HV, HH_var, HV_ent, Avg

Texture features from Synthetic Aperture
Radar data (contrast, correlation, dissimilar-
ity, entropy, angular second moment, vari-
ance, smoothed average—savg, standard
deviation—stdDev, amplitude—amp) and in-
dices (Normalised Difference Index—NDI;
Average—Avg; Difference—Diff; Ratios—R1,
R2; Normalised Lateral Index—NLI) to cap-
ture physical landscape variations, aiding in
detailed land cover classification.

28

Terrain

Elevation, Eastness, Shape Index, Northness,
slope, Hill shade, Gaussian Curvature, Mean
Curvature, Vertical Curvature, Aspect, Hori-
zontal Curvature, Minimal Curvature, Maxi-
mal Curvature

Topographic attributes from Shuttle Radar To-
pography Mission data, providing essential
context for geomorphological analysis and
land cover distribution.

13

Total number of features considered for the classification 62
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2.5. Feature Selection and Classification

The image features (Table 3) were standardised by subtracting the mean and scaling to
unit variance prior to classification. To deal with the challenge of overfitting, the recursive
feature elimination (RFE) algorithm was used to reduce the number of features. RFE is
a well-established iterative process that ranks and selects image features by eliminating
the least important features based on stratified 2-fold cross-validation scores [61]. The
algorithm creates a model with all the features, computes their importance scores, removes
the least important features, and repeats the process until a desired subset of features is
achieved. This process was employed via the Scikit-learn Python library [62], a widely
used and robust library for machine learning applications. This was executed using Google
Colab as the computational platform.

Identified important features were used to retrain a random forest (RF) algorithm
for the classification. RF is an ensemble classifier that combines decision trees, bootstrap
aggregation (bagging), and random subspace methods for classification and regression [63].
The combination of many weak learners in an ensemble contributes to RF achieving higher
accuracy compared to machine learning algorithms based on a single classifier [63,64]. RF
has become increasingly important in land cover classification in recent times because of its
nonparametric nature, ability to limit overfitting, and its flexibility [32,49]. In their analysis
of machine learning classifiers, Kaszta et al. [65] and Awuah et al. [47] also identified RF
and SVM as the best performers among others that included k-nearest neighbours (kNN)
and classification and regression trees (CART).

In the application of the RF classifier, two important parameters require careful selec-
tion to optimise the classifier’s accuracy and computational efficiency: the number of trees
(ntree) and the number of features considered for splitting at each node (mtry). The ntree
and mtry were set at 100 and 2, respectively. This configuration is grounded in findings by
Nomura et al. [27], who demonstrated that classification accuracy does not significantly
increase beyond 100 trees in a similar study, noting that a higher number of trees contributes
diminishing returns to model performance. Also, the mtry value of 2 enhances the diversity
of the model by limiting the number of features considered for each split, thereby reducing
the model’s susceptibility to overfitting and improving its robustness.

Feature importance scores were also computed to determine the relative contribution
of each image feature in the classification of the different land cover types. Some of the most
frequent approximations for feature selection include Gini Index [66], gain-ratio [67], and
Chi-square test [68]. Feature importance scores for the overall classification were estimated
using the RF-based Gini criterion.

RF uses Gini Index for feature selection at each node [39,47]. When assigning an input
pixel to a class (Ci), for a given training set (T), the Gini Index measures feature impurity
with respect to the different classes and is expressed as

∑ ∑i ̸=j

(
f (Ci, T)
(T|

)( f
(
Cj, T

)
(T|

)
, (1)

where f (Ci, T) denotes the frequency of class Ci in the training set T, and |T| is the total
number of elements in T. This formula iterates over all pairs of classes i and j, calculating the
product of their relative frequencies and then summing these products to obtain the overall
Gini Index. A lower Gini Index value indicates a higher purity of the node, contributing to
more accurate classification outcomes in the RF model [47,69]. Feature importance scores
for each land cover class were subsequently estimated from the product of the overall
feature importance estimates and the standardised mean value of each feature split for the
given class.

A post-classification majority filter was applied to improve class homogeneity using a
3 × 3 pixel moving window [27,39,49]. This approach examines and potentially modifies
the classification of each pixel based on the prevailing class among its immediate eight
neighbours. By aligning the class of a central pixel with the majority class found within its
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surrounding context, this filtering technique effectively reduces the presence of isolated or
anomalously classified pixels.

Accuracy of the classified images were evaluated using a confusion matrix [70], from
which precision, recall, F1 score, weighted F1 score, and Overall Accuracy (OA) metrics were
calculated using Equations (2–(6). Accuracy-adjusted estimates of tropical peatland area
coverage were obtained following Olofsson et al. [71].

Precision =
tp

tp + f p
, (2)

Recall =
tp

tp + f n
, (3)

F1 score = 2 × Precision × Recall
Precision + Recall

, (4)

Fweighted
1 = ∑N

i=1

(
Si

Stotal
× F1,i

)
, (5)

OA =
tp + tn

tp + f p + tn + f n
, (6)

where tp, fp, tn, and fn represent the number of true positive, false positive, true negative,
and false negative cases, respectively; Si is the support (the number of true instances) for
class i, Stotal is the total support across all classes, and F1,i is the F1 score for class i.

2.6. Predicting Future Land-Use and Land Cover Changes with Cellular Automata and Artificial
Neural Network (CA-ANN)

One aspect of this study was to predict land cover scenarios for the short term (2030)
and long term (2040) using the CA-ANN model, which integrates Cellular Automata (CA)
and Artificial Neural Networks (ANN). The CA model was selected for its capability to
simulate complex spatial patterns of LULC changes [72–74], while ANN was incorporated
to overcome CA’s limitation in handling driving forces [74,75]. This model was imple-
mented using the MOLUSCE plugin in QGIS, which involves steps including input data
preparation, area change analysis, model calibration, simulation, and validation.

2.6.1. Model Input Data and Selection of Explanatory Variables

The first step in applying the CA-ANN model is to input historical LULC maps
and associated explanatory maps, from which patterns will be studied to make future
predictions. In this study, the historical maps used were the classified maps for 2010
and 2015. Explanatory maps are spatial variables hypothesised to influence the changes
in the territory. It was hypothesised that terrain features (i.e., DEM, slope, and aspect),
population density, proximity of resources to roads, and proximity of resources to water
influence land cover change. The choice of explanatory parameters was based on a review
of similar studies. For instance, Kamaraj and Rangarajan [76] reported that proximity to
roads and water influence significant variations in land-use and land cover changes, often
guiding the patterns of human settlement, agriculture, and resource exploitation. These
variables serve as vital indicators that can delineate zones of varying vulnerability and
propensity for change, thereby aiding in more accurate and predictive modelling of future
land-use trajectories. Kamaraj and Rangarajan [76], and Kafy et al. [77], also noted that
terrain features such as elevation, slope, and aspect influence land-use changes. The role
of population density in shaping land-use dynamics is also crucial. Within this context,
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distances related to roads and waterways were computed using vector representations of
these features with the Euclidean distance function in ArcGIS software. The Euclidean
distance measures the shortest path between two points in a plane or three-dimensional
space using a straight line [78]. In two dimensions, the Euclidean distance between two
points (x1, y1) and (x2, y2) is calculated as√

(x2 − x1)
2 + (y2 − y1)

2 , (7)

2.6.2. Quantifying Magnitude of LULC Changes and Transition Potential (Modelling)

The model was run on QGIS to analyse the input data, identifying locations where
changes have occurred and quantifying the magnitude of these changes. This step is crucial
for understanding the spatial and temporal dynamics of LULC changes within the study
area. Following this, the CA-ANN model was employed for LULC change transition
potential modelling, which aimed to determine all possible changes that occurred on the
landscape. CA spatial filter was then applied to the transition potential maps to simulate
future LULC scenarios. The parameter requirements for the model, such as the maximum
iteration (500) and neighbourhood pixel size (3 × 3), were set based on studies conducted
in similar contexts [76,77]. This choice of parameters ensures a reliable and accurate
representation of LULC dynamics, considering the spatial complexity of the study area.
Using the LULC data from 2010 and 2015, explanatory variables, and the transition matrices,
LULC projections were generated for 2020, 2030, and 2040.

2.6.3. Model Validation

The reliability, functionality, and acceptance of the model were evaluated using the
kappa coefficient, inherent to the MOLUSCE plugin in QGIS. The kappa coefficient is an
established statistical parameter for quantifying the level of agreement between predicted
and observed LULC maps, beyond what would be expected by chance [73,79,80]. The
coefficient is calculated with the following formula:

Kappa (k) =
Po − Pe

1 − Pe
, (8)

where Po represents the observed agreements and Pe is the expected agreement by chance.
The observed agreement (Po) is the sum of the probabilities of each category being cor-
rectly predicted:

Po = ∑c
i=1 Pii , (9)

Pe = ∑c
i=1 (Pi+ × P+i) , (10)

Pii denotes the probability of both raters agreeing on category i, Pi+ is the sum of the
probabilities across row i (the total predicted probability for category i), and P+i is the sum
of the probabilities down column i (the actual probability for category i). The subscript c
denotes the number of categories.

The kappa value (k) ranges from −1 to 1, interpreting the agreement level: 0 indicates
that the level of agreement is what would be expected purely by chance; a k value of 1 means
there is complete agreement between the raters; conversely, a negative k value suggests
that the agreement is worse than random chance, indicating a systematic disagreement
between the raters.
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3. Results
3.1. Feature Selection for Enhanced Land Cover Classification

After executing the RFE, the optimal number of features was obtained, as shown
in Figure 4. This represents subsets of feature variables that combine to produce the
best classification accuracy. The results show that out of the 62 features evaluated for the
land cover classification, only 27 were deemed important for the classification process.
Consequently, the highest accuracy for the dataset was achieved when these 27 features
were employed. Beyond the optimal point (27, 0.9852), the accuracy score fluctuated as the
number of features increased, indicating the presence of irrelevant or redundant features
that did not enhance classification accuracy and necessitated removal.

Figure 4. Plot of accuracy vs. number of image features.

The features retained for the classification included six original image bands (radar
and optical), twelve spectral indices, four texture features, and five terrain features. Figure 5
shows the relative importance scores of the selected final input features in differentiating
land cover categories. The top 10 most important features comprised five spectral indices,
two original spectral bands, two terrain features, and one texture feature. Elevation
emerged as the most important feature, followed by the texture feature HH_savg (Figure 5).
Among the original spectral bands, SWIR1 displayed the highest importance, followed
by SWIR2 and NIR. The most relevant spectral indices were SAVI, GNDVI, and MSAVI2,
while the most influential terrain variables were elevation, slope, and Hill shade. Texture
features with the highest importance were HH_savg, HV_savg, and NLI, respectively.

3.2. Classification Accuracy

The overall classification accuracy was high, achieving 93%, 94%, and 94% for the 2010,
2015, and 2020 classifications, respectively (Table 4). To provide a more comprehensive
evaluation of the model’s performance, weighted F1 scores were also calculated, yielding
values of 0.80, 0.76, and 0.76 for 2010, 2015, and 2020, respectively. These scores account
for class imbalances by weighting each class’s F1 score based on its support, offering a
balanced assessment of both precision and recall across all land cover types.
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Figure 5. Feature importance scores of selected image features following RFE. Original bands, texture,
spectral indices, and terrain features were chosen based on the number of features that retained
optimal accuracy.

High accuracy was consistently observed in the Natural Forest category, with F1 score
approaching 1, across all years, indicating robust classification performance. Mixed swamp
and mangrove classes also showed improvement, particularly in F1 score metrics over
time. In contrast, categories such as sparse vegetation and coconut exhibited lower F1
scores, highlighting areas where classification performance was less accurate and could
benefit from further refinement. Consistent patterns of misclassifications were observed
(see Supplementary Tables S1.1–S1.3). Notably, sparse vegetation was often misclassified
with natural forests and rubber plantations across all maps. Bare surface and built-up areas
were frequently confused in the 2015 and 2020 maps, while mangroves were occasionally
misclassified as mixed swamp. Error matrices for each classification are presented in
Supplementary Tables S1.1–S1.3.

Table 4. Model precision, recall, F1 score, OA, and weighted F1 score metrics of GAP for individual
land cover categories and overall classification. Metrics are presented for each land cover class in the
2010, 2015, and 2020 datasets.

General
Classes

Land Cover
Classes

2010 2015 2020

Precision Recall F1
Score Precision Recall F1

Score Precision Recall F1
Score

Peatland

Mangrove 0.91 0.59 0.72 0.68 0.36 0.47 0.70 0.74 0.72
Mixed swamp 0.97 0.93 0.95 0.95 0.92 0.94 0.97 0.90 0.93
Palm swamp 0.75 0.75 0.75 0.77 0.75 0.76 0.80 0.69 0.74
Bog plain 0.95 0.74 0.83 0.75 0.90 0.82 0.81 0.76 0.78
Natural forest 0.95 0.97 0.96 0.94 0.99 0.97 0.94 0.99 0.97
Sparse vegetation 0.18 0.24 0.20 0.37 0.41 0.39 0.38 0.50 0.43

Plantation
Rubber 0.89 0.96 0.93 0.93 0.77 0.84 0.68 0.48 0.57
Coconut 0.49 0.55 0.52 0.40 0.47 0.43 0.28 0.54 0.37
Oil palm 0.83 0.51 0.63 0.13 0.67 0.21 0.38 1 0.55

Artificial
surface

Built-up 0.86 0.99 0.92 0.99 0.88 0.93 0.99 0.90 0.95
Bare surface 1 0.75 0.86 1 0.50 0.67 1 0.75 0.86
Water 0.99 0.99 0.99 1 1 1 1 1 1

Weighted F1 Score 0.80 0.76 0.76

OA 93% 94% 94%
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3.3. Land Cover Changes

The study observed extensive land cover changes between 2010 and 2020 (Figure 6). A
total of 114,028 ha, accounting for 21% of the entire GAP, experienced change from 2010 to
2015. A similar extent of change was observed from 2015 to 2020, affecting another 113,014
ha (21% of the area). When areas classified as water bodies are excluded from this analysis,
the proportion of GAP that underwent land cover transitions—either through reduction or
expansion of particular cover types—increases to approximately 44% for 2010–2015 and
43% for 2015–2020. This recalibration serves to highlight the extent of terrestrial changes
more clearly and offers valuable insights into the dynamics of human impacts on the
landscape.

Figure 6. Land cover changes in the GAP between 2010, 2015, and 2020.

The spatial distribution of land cover and patterns of change across 2010, 2015, and
2020 are shown in Figure 7, while Table 5 presents land cover class areas and their respec-
tive changes throughout the study period. Although palm swamp forest experienced a
substantial decline from 9647.91 ± 35.07 ha in 2010 to 6325 ± 24.68 ha in 2020, peatlands in
general increased from 54,502 ± 198.10 ha in 2010 to 61,072 ± 238.29 ha in 2020 (Table 5).
Mangrove initially contracted by 297.05 ± 7.91 ha between 2010 and 2015, before expanding
by 209.21 ± 7.93 ha between 2015 and 2020. Bog plain also expanded moderately, from
1881.89 ± 6.84 ha in 2010 to 2410.98 ± 9.41 ha in 2020.

Sparse vegetation experienced a significant reduction from 45,064 ± 163.79 ha in
2010 to 29,424 ± 114.81 ha in 2020. On the other hand, rubber plantations experienced
considerable growth (85%), increasing from 30,530 ± 110.96 ha in 2010 to 56,617 ± 220.90 ha
in 2020. Coconut and oil palm plantations diminished in extent across the three time periods
(Table 5).

Artificial surface exhibited steady growth from 4584 ± 16.66 ha in 2010 to 4946 ± 17.98 ha
in 2015 to 5252 ± 20.49 ha in 2020. These findings underscore the dynamic nature of land
cover changes in the GAP and highlight the importance of monitoring and understanding
the driving forces behind these changes for better land-use planning and sustainable
development.
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Figure 7. Land cover maps for GAP from (a) 2010, (b) 2015, and (c) 2020.
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Table 5. Accuracy-adjusted land cover area and changes. Area of change corresponds to the proportion of the total area. (−) denotes area decrease of the land cover
type. See Table 1 for the definitions of land cover types.

Land Cover Type 2010 2015 2020 2015/2010 Change (ha) 2020/2015 Change (ha) 2020/2010 Change (ha)

Mangrove 1687.31 ± 6.13 1390.26 ± 5.05 1599.47 ± 6.24 −297.05 ± 7.91 209.21 ± 7.93 −87.84 ± 8.76
Mixed swamp 41,285.57 ± 150.06 46,643.83 ± 169.53 50,736.49 ± 197.96 5358.26 ± 226.30 4092.66 ± 260.01 9450.92 ± 245.71
Palm swamp 9647.91 ± 35.07 8046.48 ± 29.25 6326.00 ± 24.68 −1601.43 ± 45.50 −1720.48 ± 38.20 −3321.91 ± 42.82
Bog plains 1881.89 ± 6.84 1892.77 ± 6.88 2410.98 ± 9.41 10.88 ± 9.74 518.21 ± 11.53 529.09 ± 11.64

Peatland 54,502.68 ± 198.10 57,973.34 ± 210.71 61,072.94 ± 238.29 3470.66 ± 289.38 3099.6 ± 317.45 6570.26 ± 308.59

Natural forest 96,623.40 ± 351.19 81,683.75 ± 296.89 90,658.03 ± 353.72 −14,939.65 ± 458.76 8974.28 ± 461.82 −5965.37 ± 497.73
Sparse vegetation 45,064.16 ± 163.79 31,119.10 ± 113.11 29,424.84 ± 114.81 −13,945.06 ± 195.82 −1694.26 ± 161.04 −15,639.32 ± 196.85
Rubber 30,530.00 ± 110.96 61,438.56 ± 223.31 56,617.24 ± 220.90 30,908.56 ± 237.78 −4821.32 ± 313.80 26,087.24 ± 235.21
Coconut 20,919.19 ± 76.03 18,183.26 ± 66.09 12,538.92 ± 48.92 −2735.93 ± 100.85 −5644.34 ± 81.76 −8380.27 ± 88.77
Oil-palm 9016.27 ± 32.77 5788.27 ± 21.04 5128.89 ± 20.01 −3228 ± 38.06 −659.38 ± 29.07 −3887.38 ± 37.41

Plantation 60,465.47 ± 219.77 85,410.08 ± 310.43 74,285.05 ± 289.84 24,944.61 ± 375.09 −11,125.03 ± 424.68 13,819.58 ± 361.39

Built-up 4560.93 ± 16.58 4920.67 ± 17.88 5207.28 ± 20.32 359.74 ± 24.40 286.61 ± 27.00 646.35 ± 26.22
Bare surface 23.45 ± 0.09 25.68 ± 0.09 45.57 ± 0.18 2.23 ± 0.13 19.89 ± 0.19 22.12 ± 0.19

Artificial surface 4584.38 ± 16.66 4946.35 ± 17.98 5252.85 ± 20.49 361.97 ± 24.48 306.5 ± 27.15 668.47 ± 26.33

Water 286,131.70 ± 1039.98 286,239.20 ± 1118.52 286,678.10 ± 1118.52 107.5 ± 1527.81 438.9 ± 1595.56 546.4 ± 1521.88
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3.4. Relative Land Cover Transitions

Examination of the land cover transitions shows a landscape characterised by dynamic
shifts (Figure 8). Establishment of rubber plantations primarily occur at the expense of
forested areas, especially natural forest. Although there is evidence of peat swamp forest
being converted to rubber (i.e., 4751.8 ha overall between 2010 and 2020), a more prominent
trend of natural forest to rubber conversion is observed (i.e., 20,786.23 ha in the 2010–2015
period alone) (Supplementary Tables S2.1 and 2.2).

The results also suggest that palm swamps act as pioneer habitats in the ecological
succession towards mixed swamps by colonising the landscape before other tree species
become established to form a mixed-species swamp (mixed-swamp). This succession is
reflected in the observed decrease in palm swamp areas (3149 ha from 2010 to 2015 and 2920
ha from 2015 to 2020) and a corresponding increase in mixed swamp areas (Supplementary
Tables S2.1 and 2.2).

An observed agricultural shift highlights a transition from areas characterised by
sparse vegetation (including smallholder food crop farms) and coconut plantations, towards
rubber cultivation (Figure 8). About 27,091 ha of sparse vegetation cover transitioned to
rubber from 2010 to 2020, with an additional 1482 ha moving from coconut to rubber within
the same period. This shift likely reflects farmers’ and landowners’ responses to economic
incentives, adjusting their crop choices to maximise financial returns.

Urban expansion was gradual, with built-up areas increasing by 360 ha (7.89%) from
4,561 ha in 2010 to 4921 ha in 2015, followed by a further increase of 286.28 ha (5.82%)
between 2015 and 2020, culminating in a total of 5207.28 ha. A considerable amount
of this urban development occurred on lands previously classified as sparse vegetation
(Supplementary Tables S2.1 and 2.2).

3.5. Projected Land Cover Changes

GAP is projected to remain largely stable, with minor modifications expected for 2030
and 2040 (Table 6). Modest expansion is forecasted for mangrove and mixed swamp areas,
with each expected to increase by 0.73 ha by 2030. This positive trend may be attributed
to conservation efforts by non-governmental organisations and their donor partners (Hen
Mpoano, 2016a, 2017 [20,21]). Palm swamp and natural forest areas are anticipated to
exhibit minor declines of 0.09 ha and 0.18 ha, respectively (Table 6), indicative of ongoing
habitat loss and fragmentation due to agricultural expansion, logging, and infrastructure
development.

Rubber plantations and built-up areas are projected to expand modestly, with a pro-
jected increase of 1.57 ha and 15.25 ha, respectively (Table 6). This expansion reflects
the growing demand for agricultural commodities and the need for urban development
to support increasing human populations [81,82]. Conversely, coconut plantations, bog
plains, and sparse vegetation areas are projected to contract marginally, with a decrease of
4.28 ha, 4.45 ha, and 8.94 ha, respectively (Table 6). Projecting further to 2040, mangrove,
mixed swamp, palm swamp, rubber, oil palm, and built-up areas are expected to display
net increases of 4.90 ha, 34.42 ha, 6.60 ha, 2.79 ha, 13.55 ha, and 23.53 ha, respectively
(Table 6). These trends suggest that pressures driving land cover changes, such as agri-
cultural expansion and urbanisation, are expected to persist. On the other hand, natural
forest, sparse vegetation, coconut, and bog plains are expected to manifest net decreases of
11.59 ha, 10.42 ha, 4.66 ha, and 13.47 ha, respectively (Table 6). This indicates that the loss
and degradation of these ecosystems may continue, with potential adverse consequences
for biodiversity, ecosystem services, and local livelihoods.
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Figure 8. Sankey diagram showing dynamic land cover transitions in the GAP: (a) represents transitions from 2010 to 2015 and (b) depicts changes from 2015 to 2020.
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Table 6. CA-ANN projections for land cover areas (in hectares) and their changes from 2020 to 2040.
It details the forecasted land cover class areas for 2030 and 2040, and it quantifies the shifts in land
cover from 2020 to 2030 and again from 2020 to 2040.

Land Cover 2030 2020–2030
Change 2040 2020–2040

Change

Mangrove 1600.20 0.73 1604.37 4.90
Mixed swamp 50,737.23 0.73 50,770.91 34.42
Palm swamp 6325.91 −0.09 6332.60 6.60
Bog plains 2406.53 −4.45 2397.51 −13.47
Natural forest 90,657.85 −0.18 90,646.43 −11.59
Sparse vegetation 29,415.90 −8.94 29,414.42 −10.42
Rubber 56,618.81 1.57 56,620.03 2.79
Coconut 12,534.64 −4.28 12,534.27 −4.66
Oil-palm 5128.89 0.00 5142.45 13.55
Built-up 5222.53 15.25 5230.81 23.53
Bare surface 45.57 0.00 46.35 0.78
Water 286,677.76 −0.36 286,631.66 −46.46

3.6. Evaluation of the CA-ANN Model for Land Cover Simulation

The overall Kappa value obtained for the CA-ANN model validation was 0.70, in-
dicating a substantial agreement between the observed and simulated 2020 land cover
maps. The accuracy rate was 80%, reflecting the percentage of land cover pixels that the
model correctly classified when compared to the actual observed data during the validation
process. The Kappa histogram (Category-Specific Kappa) value was 0.96, demonstrating
an exceptionally high degree of consistency across different land cover categories. The
kappa location value was 0.72, indicating a good level of spatial accuracy in matching the
locations of observed and simulated land cover classes.

These results demonstrate the effectiveness of the CA-ANN model in accurately
simulating land cover changes in the study area. However, it is important to note that the
accuracy of the CA-ANN model may be influenced by various factors, including the quality
of the input data, the choice of model parameters, and the complexity of the underlying
land cover dynamics [83]. Therefore, future research should continue to refine and improve
the model, as well as explore the use of alternative modelling approaches and data sources,
to enhance the accuracy and robustness of land cover simulations [84].

4. Discussion of Results
4.1. Optimal Features for the Enhanced Land Cover Classification

The results showed that out of the 62 image features initially evaluated for the assess-
ment, only 27 were considered essential for the classification process (Figure 4). These
27 features included six original image bands (radar and optical), twelve spectral indices,
four texture features, and five terrain features, representing a diverse set of information
that captures the unique spectral, spatial, and terrain characteristics of the land cover types
in the study area.

The feature importance assessment identified elevation as the most important element
for the land cover classification (Figure 5). This is consistent with our earlier findings [39],
reinforcing the important role of terrain data in tropical peatland classification. Terrain
characteristics offer insights into the physical and environmental factors affecting land
cover distribution and are key in identifying the suitability of specific area’s activities such
as agriculture, infrastructure development, and conservation initiatives [60,82,85–87]. The
radar-derived texture feature HH_savg was the second most important image feature in
the classification, confirming the advantage of multi-source remote sensing data. This
approach can be particularly effective for capturing the complex spatial heterogeneity of
land cover types and offer a valuable solution in regions prone to cloud cover or where
high-quality optical imagery is scarce [28,88].
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Among the original spectral bands, the SWIR1 band exhibited the highest importance,
followed by the SWIR2 and NIR bands (Figure 5). These findings align with research
that have highlighted the enhanced sensitivity of SWIR and NIR bands in discriminating
vegetation structures, moisture content, and land cover transitions [50,59,89,90]. Their
wavelengths are adept at capturing distinct spectral signatures associated with different
biophysical properties and land surface conditions [32].

The most relevant spectral indices included the SAVI, GNDVI, and MSAVI2, which are
known to provide robust measures of vegetation condition and stress as well as minimise
the influence of soil background and atmospheric effects [47,85,91]. The high importance
scores of these indices confirm their effectiveness in differentiating between land cover
types characterised by varying levels of vegetation cover and density, such as forests,
plantations, and bogs [92–94].

Texture features with the highest importance were HH_savg, HV_savg, and NLI,
respectively. According to Haralick et al. [95], texture features derived from the spatial
arrangement and variability of pixel values within a given window can effectively capture
the structural and contextual information of land cover types and improve the classification
accuracy, especially for classes with similar spectral characteristics but distinct spatial
patterns. The inclusion of these texture features in the optimal subset of image variables
demonstrates their utility in enhancing the discriminative power of the classifier and the
robustness of the land cover classification process [26,29,96].

4.2. Classification Accuracy

Many remote sensing studies typically employ surface reflectance to mitigate atmo-
spheric effects (e.g., [25,33,52,97,98]); however, in this study, TOA reflectance was utilised,
allowing for the acquisition of a greater number of cloud-free observations. Despite the
potential uncertainties associated with TOA reflectance, the results demonstrated satis-
factory classification performance, with high overall accuracies achieved across all land
cover maps (Table 4). This can be attributed to the optimal selection of image features,
the robustness of the random forest classifier, and the meticulous digitisation process that
ensured the accuracy of reference data used for validation [48,70,71,99].

The satisfactory classification performance of individual land cover classes further
confirms the effectiveness of the proposed methodology in capturing the spatial and
spectral variability of different land cover types in the GAP. In particular, the peatland
classes—including mangroves, mixed swamps, palm swamps, and bog plains—achieved F1
scores exceeding 0.7 in most cases, except for mangroves, which displayed lower accuracies
due to their misclassification with mixed swamps (Table 4). This may result from the
spectral similarity between these two classes (see Supplementary Figure S1), as well as
their spatial proximity and the presence of mixed patches of mangroves and swamps in
transitional zones [100,101]. However, the overall classification performance of peatland
classes can still be considered satisfactory, considering the complexity and heterogeneity of
these ecosystems and their susceptibility to various anthropogenic and natural disturbances
that may alter their spectral characteristics [102,103].

Consistent patterns of misclassifications were identified among the other vegetation
types (Supplementary Tables S1.1–S1.3). For example, the term ’sparse vegetation‘ encom-
passed a range of vegetation within the study area, such as young plantation trees, rainfed
croplands, and small-scale agriculture (Table 1). Consequently, misclassifications of sparse
vegetation and other land cover types were expected. Also, newly established rubber
plantations, characterised by land cleared of most trees and woody vegetation but possibly
retaining some trees for shade or a herbaceous understory, could be easily mistaken for
sparse vegetation.

Misclassifications observed in the 2020 land cover map between rubber plantations
and natural forests (Supplementary Table S1.3) may be attributed to the similarities in
spectral reflectance and the spatial configuration of these classes such as the growth of
mature rubber plantation crowns and improper planting spacing [104]. Bare surfaces and
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built-up areas may also be misclassified due to the similar spectral appearance of dry soil
and light-impervious surfaces such as concrete [105,106].

Overall, while lower accuracy metrics were observed for certain non-peatland classes
(Table 4), we retained them in the classification schema due to their ecological importance
and relevance to the study area’s land-use patterns. Merging these classes would have
risked oversimplifying the landscape, and the decision to keep them offers a more detailed
representation of the spatial and ecological heterogeneity of the GAP.

4.3. Land Cover Changes

The spatial distribution of land cover and patterns of change across the three time
periods revealed several notable trends and dynamics. For instance, the peatland classes,
particularly mixed swamp and bog plains, exhibited expansion trends, whereas palm
swamp forests showed a significant decline (Table 5). These changes may be related to
various factors such as climate variability, hydrological alterations, natural processes, and
anthropogenic pressures, including land-use changes [107–109]. Mangroves expanded
from 2015 to 2020 and could be attributed to the successful implementation of conservation
and mangrove restoration efforts by NGOs and local communities in the region since 2015
(Figure 9; [20,21]).

Figure 9. Early growth stages of replanted mangroves in GAP (Source: Hen Mpoano, [20]).

Bog plain expansions may be linked to natural processes such as peat formation and
accumulation [85,110]. Conversely, reductions in sparse vegetation areas (encompassing
a diverse range of land cover types such as young plantation trees, rainfed croplands,
and small-scale agriculture; Table 1) may be attributed to the corresponding expansion of
rubber plantations and urbanisation (Figure 7; Table 5). Rubber plantations experienced 85%
growth, increasing from 30,530 ± 110.96 ha in 2010 to 56,617 ± 220.90 ha in 2020 (Table 5).
This can be linked to the increasing global demand for natural rubber and favourable
market conditions, which have incentivised land conversion to rubber plantations [111–113].
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Declines in coconut and oil palm plantations may be related to factors such as disease
outbreaks, changes in agricultural policies, or shifts in market preferences [114–118].

Built-up and bare areas exhibited steady growth from 2010 to 2020 (Figure 7; Table 5),
reflecting the urbanisation and development in the GAP. This urban expansion may be
driven by increasing population and reported infrastructural developments, particularly
due to the expanding oil and gas activities in the region [20,34,35,119]. Conversion of lands
for urban purposes can lead to habitat loss, fragmentation, and alterations in ecosystem
functions, which in turn can have significant implications for biodiversity, ecosystem
services, and human well-being [6,120].

The relative stability of water areas throughout the study period (Table 5) suggests
that hydrological processes, such as surface runoff and evapotranspiration, have remained
relatively constant over time [121]. However, further research is needed to investigate
potential changes in water quality, groundwater resources, and aquatic ecosystems in
response to land cover changes and human activities in the region.

These land cover changes highlight the complex interplay between natural processes,
socioeconomic drivers, and policy interventions that shape land-use and land cover pat-
terns over time. Understanding these dynamics is important for informing land-use
planning, resource management, and conservation efforts aimed at promoting sustain-
able development and enhancing ecosystem resilience in the face of global environmental
change [108,122,123].

4.4. Relative Land Cover Transitions

The assessment of land cover transitions within the GAP indicates significant shifts,
with both losses and gains among various land cover types (Figure 8; Supplementary
Tables S2.1 and S2.2). Establishment of rubber plantations was predominantly at the ex-
pense of natural forest and sparse vegetations (including smallholder food crop farms).
This trend reflects broader patterns of deforestation for monoculture expansion in tropical
regions [111–113,124,125], raising concerns about the long-term ecological sustainability of
GAP and its capacity to support diverse ecosystems. Monoculture plantations can lead to
soil nutrient depletion, increased pest pressures, and greater vulnerability to diseases [111].
It could also have significant implications for local livelihoods and food security by reduc-
ing the availability of land for food production and potentially disrupt traditional land-use
systems [112].

Expansion of built-up and bare areas, collectively referred to as artificial surfaces, also
occurred predominantly in areas previously occupied by sparse vegetation (Supplementary
Tables S2.1 and S2.2). This confirms the ongoing urbanisation and infrastructure devel-
opment within the GAP. Such changes can lead to reduced agricultural land availability,
displacement of natural habitats, and potential disruption of local biodiversity and water
cycles [112,126].

The results further suggest that palm swamps act as pioneer habitats in the ecological
succession towards mixed swamps, initially colonising the landscape before other tree
species become established to form a mixed-species swamp (Supplementary
Tables S2.1 and S2.2). This transition is likely influenced by factors such as hydrology
and natural succession processes [15], with the establishment of mixed swamp forests
potentially offering increased habitat diversity and ecosystem functionality [1]. Such
transitions underscore the dynamic nature of peatland ecosystems in the GAP.

In general, these land cover transitions have important implications for land man-
agement and conservation efforts. The conversion of natural forests to rubber plantations
highlights the need for policies that balance agricultural expansion with the conservation
of natural ecosystems. This may include the promotion of sustainable land management
practices, such as agroforestry, which can enhance biodiversity and maintain ecosystem
services while also supporting rural livelihoods [85,127,128]. Protecting and restoring palm
swamp and mixed swamp ecosystems can also provide a valuable habitat for many species
and contribute to the overall ecological integrity of the GAP. Conservation efforts should
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focus on preventing further degradation and fragmentation of these ecosystems, as well
as promoting the recovery of degraded areas through reforestation or assisted natural
regeneration [6,129].

The expansion of built-up and bare surface areas indicates that urban planning and
infrastructure development should be integrated with biodiversity conservation objectives.
This may involve implementing land-use zoning and green infrastructure strategies that
minimise habitat fragmentation and enhance ecological connectivity [19]. It is also impor-
tant to continuously monitor and analyse land cover changes to inform land management
and conservation decision-making. Remote sensing and GIS can be a valuable tool in this
process, as demonstrated in this study, enabling stakeholders to better understand the
drivers and consequences of these changes and to develop more effective strategies for
sustainable land use and conservation [53,130].

4.5. Projected Land Cover Changes

Projections of land cover changes within the GAP for 2030 and 2040 were based on land
cover transitions observed between 2010 and 2020, terrain characteristics, infrastructure
proximity, and population density metrics. The results estimate minor changes in GAP
(Table 6), implying that the ecological and developmental dynamics within the area are
likely to maintain a steady state, with conservation efforts and development pressures
achieving a delicate balance. However, these projections do not account for several factors
that are likely to influence the land cover trajectory of the region. Notably absent are the
effects of climate change, the implications of proposed mining concessions, the potential
impacts of the proposed USD 60 billion petroleum hub project, the region’s rapid population
growth, and the absence of frequent temporal data points [20,21,119,131]. The omission
of these drivers presents a limitation, as their potential to alter land cover and ecosystem
dynamics could be significant. For instance, the lack of frequent temporal data points limits
the model’s capacity to capture short-term fluctuations and rapid transitions in this highly
dynamic ecosystem.

Future studies should address these limitations by incorporating climate change sce-
narios, which are essential for understanding potential impacts on ecosystems, agriculture,
and water resources. It is also crucial to include the land cover implications of large-scale
projects such as the petroleum hub and mining activities, alongside population growth
trends and other socioeconomic dynamics, to provide a more accurate and comprehensive
forecast of land cover changes. Increasing the temporal resolution of the data by incor-
porating more frequent time points, such as annual data or even real-time data streams,
would further enhance the ability to capture rapid transitions and short-term fluctuations.
This approach would provide a more nuanced understanding of seasonal variations and
smaller-scale disturbances, offering a more detailed and accurate representation of land
cover dynamics. Additionally, evaluating the model’s sensitivity to various parameters
and assessing its robustness under different environmental scenarios will be valuable.
Sensitivity analyses can identify which factors most significantly impact model outputs,
guiding improvements in model structure and data collection priorities. By addressing
these aspects, future research can significantly advance the predictive capabilities of our
model, ensuring more reliable and actionable forecasts.

This initial projection should be viewed as an important baseline from which to
gauge the potential impacts of the unconsidered factors, identify areas of both stability
and vulnerability within the GAP, and inform targeted conservation and development
strategies. Integrating these overlooked aspects will allow for a better understanding of
the dynamic interplay between natural processes and human activities, facilitating the
development of nuanced strategies that ensure the sustainability and resilience of GAP’s
land cover. By doing so, policymakers, conservationists, and stakeholders can undertake
informed actions that balance ecological preservation with socioeconomic development,
ensuring the long-term well-being of the region and its inhabitants.
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4.6. Contrasting Projections with Existing Literature

This study projects a net increase in mangrove areas, a decrease in natural forest
cover, and a modest expansion of rubber plantations and built-up areas by 2040. Such
projections contrast with global trends of mangrove degradation and diverge from literature
suggesting widespread forest recovery [52,132–137]. The anticipated modest growth in
rubber plantations and urban areas also differs from reports of their rapid expansion in
certain regions [138,139].

This divergence highlights the unique ecological dynamics and land-use pressures
within GAP, emphasising the need for context-specific conservation strategies and land
management policies. The specificity of the findings underscores the importance of localised
environmental assessments in informing sustainable development practices, particularly
in regions facing the dual challenges of preserving biodiversity while accommodating
economic growth.

5. Conclusions

Tropical peatlands are vital ecosystems facing increasing pressure from anthropogenic
land-use activities. Understanding how these pressures alter these ecosystems over time
and projecting future changes is crucial for their sustainable management, particularly
in Africa, where information on peatlands remains limited. This study presents the first
attempt to analyse and predict land cover changes in the GAP from 2010 to 2020, with
projections extending to 2040, using multi-source remote sensing data and machine learning
techniques. The findings indicate significant land cover changes—notably, an 85% increase
in rubber plantations and a 6% decrease in natural forest cover, underscoring the impact of
human activities on the region. Future projections suggest minor changes in land cover by
2040. However, these projections do not account for potential impacts from climate change,
large-scale development projects, and demographic shifts, which could significantly alter
land cover dynamics. Continuous monitoring and adaptive management are therefore
essential to ensure the resilience and sustainability of the GAP ecosystem. Overall, the
research contributes to the broader understanding of land cover dynamics in tropical peat-
lands and emphasises the need for integrated conservation and development strategies.
The methodological approach demonstrated here provides a robust framework for accu-
rately monitoring and predicting land cover dynamics in tropical peatlands, which can be
adapted for similar ecosystems globally. Policymakers and stakeholders are encouraged to
utilise these insights to develop targeted actions that balance ecological preservation with
socioeconomic development, ensuring long-term ecological health and human well-being
in the GAP region.
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