Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134497
Título: Peak load reduction and resilience benefits in critical microgrids
Autores/as: Rosales Asensio, Enrique 
Icaza, Daniel
González Cobos, Noemí
Borges Díez, David
Clasificación UNESCO: Investigación
Palabras clave: Peak load reduction
Resilience benefits
Resilience analysis
Dispatch optimization
Critical microgrids
Fecha de publicación: 2023
Editor/a: Springer 
Publicación seriada: Power Systems
Resumen: This research analyzes the combined peak reduction and resilience increase in critical buildings through the use of microgrids configured using a specific control system to provide correct power quality for local loads that can be either connected or disconnected from the grid, operating grid-connected or islanded mode. In case of grid failure, energy storage combined with one or several local generators can provide backup power and consider both conventional and renewable energy systems. This research focuses on the design of building energy systems that are able to maintain the energy supply and establishes a methodology to evaluate the resilience benefits of a microgrid integrated into critical buildings when power outages occur and the particular case of a hospital building is presented. The optimization of the dispatch and heating and cooling strategies are analyzed and a case study characterizing an electric polygeneration microgrid feeding critical loads is presented. Results show the benefits and the increased energy resilience achieved when using solar PV, electrochemical batteries, combined heat and power, TES water tanks, and absorption chillers and propose a design and optimization scheme that can be applied for similar buildings and extend to any facility with critical loads. Results show that these microgrids can be optimally designed to improve the resilience of critical energy systems and, simultaneously, achieve economic benefits. Results show that in the event of an outage the positive monetary effects last longer than the duration of the outage.
URI: http://hdl.handle.net/10553/134497
ISSN: 1612-1287
DOI: doi.org/10.1007/978-3-031-67754-0_6
Fuente: Journal of Building Engineering [ISSN 2352-7102]
Colección:Capítulo de libro
Adobe PDF (7,14 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.