Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/133374
Título: | Temporal Focal Modulation Networks for EEG-Based Cross-Subject Motor Imagery Classification | Autores/as: | Hameed, Adel Fourati, Rahma Ammar, Boudour Sanchez-Medina, Javier J. Ltifi, Hela |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Electroencephalography Focal Modulation Networks Motor Imagery Transformer |
Fecha de publicación: | 2024 | Publicación seriada: | Communications in Computer and Information Science | Conferencia: | 16th International Conference on Computational Collective Intelligence (ICCCI 2024) | Resumen: | Motor Imagery (MI) EEG decoding is crucial in Brain-Computer Interface (BCI) technology, facilitating direct communication between the brain and external devices. However, accurately capturing temporal dependencies in MI EEG signals, especially in subject-independent MI-BCIs, remains a persistent challenge. In this paper, we present Temporal-FocalNets, a novel framework designed to address this challenge by leveraging focal modulation techniques. Temporal-FocalNets efficiently prioritize temporal dynamics, thereby enhancing the accuracy and robustness of MI EEG decoding models. Through comprehensive experiments on benchmark datasets (2a and 2b), Temporal-FocalNets demonstrates superior performance compared to established baseline models. This innovation marks a significant advancement in subject-independent MI-BCIs, offering new possibilities for individuals with motor disabilities to interact with their environment using brain signals. | URI: | http://hdl.handle.net/10553/133374 | ISBN: | 9783031702587 | ISSN: | 1865-0929 | DOI: | 10.1007/978-3-031-70259-4_34 | Fuente: | Communications in Computer and Information Science[ISSN 1865-0929],v. 2166 CCIS, p. 445-457, (Enero 2024) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.