Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/133374
Title: Temporal Focal Modulation Networks for EEG-Based Cross-Subject Motor Imagery Classification
Authors: Hameed, Adel
Fourati, Rahma
Ammar, Boudour
Sanchez-Medina, Javier J. 
Ltifi, Hela
UNESCO Clasification: 3314 Tecnología médica
Keywords: Electroencephalography
Focal Modulation Networks
Motor Imagery
Transformer
Issue Date: 2024
Journal: Communications in Computer and Information Science 
Conference: 16th International Conference on Computational Collective Intelligence (ICCCI 2024)
Abstract: Motor Imagery (MI) EEG decoding is crucial in Brain-Computer Interface (BCI) technology, facilitating direct communication between the brain and external devices. However, accurately capturing temporal dependencies in MI EEG signals, especially in subject-independent MI-BCIs, remains a persistent challenge. In this paper, we present Temporal-FocalNets, a novel framework designed to address this challenge by leveraging focal modulation techniques. Temporal-FocalNets efficiently prioritize temporal dynamics, thereby enhancing the accuracy and robustness of MI EEG decoding models. Through comprehensive experiments on benchmark datasets (2a and 2b), Temporal-FocalNets demonstrates superior performance compared to established baseline models. This innovation marks a significant advancement in subject-independent MI-BCIs, offering new possibilities for individuals with motor disabilities to interact with their environment using brain signals.
URI: http://hdl.handle.net/10553/133374
ISBN: 9783031702587
ISSN: 1865-0929
DOI: 10.1007/978-3-031-70259-4_34
Source: Communications in Computer and Information Science[ISSN 1865-0929],v. 2166 CCIS, p. 445-457, (Enero 2024)
Appears in Collections:Actas de congresos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.