Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/132825
DC FieldValueLanguage
dc.contributor.authorRivera, Pilar A.en_US
dc.contributor.authorGallardo, Diego I.en_US
dc.contributor.authorVenegas, Osvaldoen_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorGomez, Hector W.en_US
dc.date.accessioned2024-08-30T09:53:13Z-
dc.date.available2024-08-30T09:53:13Z-
dc.date.issued2024en_US
dc.identifier.issn2227-7390en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/132825-
dc.description.abstractIn this paper, we introduce a new parameterization for the scale mixture of the Rayleigh distribution, which uses a mean linear regression model indexed by mean and precision parameters to model asymmetric positive real data. To test the goodness of fit, we introduce two residuals for the new model. A Monte Carlo simulation study is performed to evaluate the parameter estimation of the proposed model. We compare our proposed model with existing alternatives and illustrate its advantages and usefulness using Gilgais data in R software version 4.2.3 with the gamlss package.en_US
dc.languagespaen_US
dc.relation.ispartofMathematicsen_US
dc.sourceMathematics [ISSN 2227-7390], v. 12 (13), (Julio 2024)en_US
dc.subject5302 Econometríaen_US
dc.subject.otherScale Mixture Of Rayleigh Distributionen_US
dc.subject.otherMaximum Likelihood Estimatoren_US
dc.subject.otherRegression Modelsen_US
dc.subject.otherResidualsen_US
dc.titleReparameterized scale mixture of rayleigh distribution regression models with varying precisionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math12131982en_US
dc.identifier.isi001268001400001-
dc.identifier.eissn2227-7390-
dc.identifier.issue13-
dc.relation.volume12en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Rivera, PA-
dc.contributor.wosstandardWOS:Gallardo, DI-
dc.contributor.wosstandardWOS:Venegas, O-
dc.contributor.wosstandardWOS:Gómez-Déniz, E-
dc.contributor.wosstandardWOS:Gómez, HW-
dc.date.coverdateJulio 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,475-
dc.description.jcr2,4-
dc.description.sjrqQ2-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Appears in Collections:Artículos
Adobe PDF (501,29 kB)
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.