Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/132825
Título: | Reparameterized scale mixture of rayleigh distribution regression models with varying precision | Autores/as: | Rivera, Pilar A. Gallardo, Diego I. Venegas, Osvaldo Gómez Déniz, Emilio Gomez, Hector W. |
Clasificación UNESCO: | 5302 Econometría | Palabras clave: | Scale Mixture Of Rayleigh Distribution Maximum Likelihood Estimator Regression Models Residuals |
Fecha de publicación: | 2024 | Publicación seriada: | Mathematics | Resumen: | In this paper, we introduce a new parameterization for the scale mixture of the Rayleigh distribution, which uses a mean linear regression model indexed by mean and precision parameters to model asymmetric positive real data. To test the goodness of fit, we introduce two residuals for the new model. A Monte Carlo simulation study is performed to evaluate the parameter estimation of the proposed model. We compare our proposed model with existing alternatives and illustrate its advantages and usefulness using Gilgais data in R software version 4.2.3 with the gamlss package. | URI: | http://hdl.handle.net/10553/132825 | ISSN: | 2227-7390 | DOI: | 10.3390/math12131982 | Fuente: | Mathematics [ISSN 2227-7390], v. 12 (13), (Julio 2024) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.