Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/132825
Title: Reparameterized scale mixture of rayleigh distribution regression models with varying precision
Authors: Rivera, Pilar A.
Gallardo, Diego I.
Venegas, Osvaldo
Gómez Déniz, Emilio 
Gomez, Hector W.
UNESCO Clasification: 5302 Econometría
Keywords: Scale Mixture Of Rayleigh Distribution
Maximum Likelihood Estimator
Regression Models
Residuals
Issue Date: 2024
Journal: Mathematics 
Abstract: In this paper, we introduce a new parameterization for the scale mixture of the Rayleigh distribution, which uses a mean linear regression model indexed by mean and precision parameters to model asymmetric positive real data. To test the goodness of fit, we introduce two residuals for the new model. A Monte Carlo simulation study is performed to evaluate the parameter estimation of the proposed model. We compare our proposed model with existing alternatives and illustrate its advantages and usefulness using Gilgais data in R software version 4.2.3 with the gamlss package.
URI: http://hdl.handle.net/10553/132825
ISSN: 2227-7390
DOI: 10.3390/math12131982
Source: Mathematics [ISSN 2227-7390], v. 12 (13), (Julio 2024)
Appears in Collections:Artículos
Adobe PDF (501,29 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.