Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/132013
DC FieldValueLanguage
dc.contributor.authorSantana Jaria, Oliverio Jesús-
dc.contributor.authorLorenzo Navarro, José Javier-
dc.contributor.authorFreire Obregón, David Sebastián-
dc.contributor.authorHernández Sosa, José Daniel-
dc.contributor.authorCastrillón Santana, Modesto Fernando-
dc.date.accessioned2024-07-02T12:57:37Z-
dc.date.available2024-07-02T12:57:37Z-
dc.date.issued2024-
dc.identifier.issn0925-2312-
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/132013-
dc.description.abstractPerson re-identification has gained significant attention in recent years due to its numerous practical applications in video surveillance. However, while artificial intelligence and deep learning methods have enabled substantial progress in particular aspects of this domain, putting together those individual advances to generate practical systems remains a computer vision challenge. Existing methods are typically designed assuming the target person’s images are captured under uniform, stable conditions with similar lighting levels, but this assumption may not hold in real-world scenarios, such as outdoor monitoring over 24 h, as image quality can vary considerably throughout day and night. In this paper, we propose a framework that incorporates image enhancement techniques to improve the performance of a person re-identification model. The proposed approach achieves a significant improvement in a demanding re-identification dataset, raising the mAP from 9.0% using a zero-shot baseline to 65.8% through the combined use of low-light image enhancement methods and noise reduction.-
dc.languageeng-
dc.relation.ispartofNeurocomputing-
dc.sourceNeurocomputing [ISSN 0925-2312], v. 598, 28011 , (Septiembre 2024)-
dc.subject120304 Inteligencia artificial-
dc.subject.otherDeep learning-
dc.subject.otherComputer vision-
dc.subject.otherImage processing-
dc.subject.otherBiometrics-
dc.subject.otherPerson re-identification-
dc.titleApplying deep learning image enhancement methods to improve person re-identification-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.1016/j.neucom.2024.128011-
dc.identifier.isi001362106700001-
dc.identifier.eissn1872-8286-
dc.relation.volume598-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages11-
dc.utils.revision-
dc.contributor.wosstandardWOS:Santana, OJ-
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J-
dc.contributor.wosstandardWOS:Freire-Obregón, D-
dc.contributor.wosstandardWOS:Hernández-Sosa, D-
dc.contributor.wosstandardWOS:Castrillón-Santana, M-
dc.date.coverdateSeptiembre 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr1,815-
dc.description.jcr5,5-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-7511-5783-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0003-3022-7698-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSantana Jaria, Oliverio Jesús-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameHernández Sosa, José Daniel-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Artículos
Adobe PDF (3,2 MB)
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Mar 30, 2025

Page view(s)

75
checked on Dec 7, 2024

Download(s)

34
checked on Dec 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.