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A B S T R A C T

Person re-identification has gained significant attention in recent years due to its numerous practical appli-
cations in video surveillance. However, while artificial intelligence and deep learning methods have enabled
substantial progress in particular aspects of this domain, putting together those individual advances to generate
practical systems remains a computer vision challenge. Existing methods are typically designed assuming the
target person’s images are captured under uniform, stable conditions with similar lighting levels, but this
assumption may not hold in real-world scenarios, such as outdoor monitoring over 24 h, as image quality
can vary considerably throughout day and night. In this paper, we propose a framework that incorporates
image enhancement techniques to improve the performance of a person re-identification model. The proposed
approach achieves a significant improvement in a demanding re-identification dataset, raising the mAP from
9.0% using a zero-shot baseline to 65.8% through the combined use of low-light image enhancement methods
and noise reduction.
1. Introduction

In the past few years, artificial intelligence has significantly affected
the evolution of surveillance and person identification strategies [1,2].
Traditional biometric features, such as fingerprints or iris patterns,
can be used to identify any individual reliably, but to accomplish
this requires a collaboration level that may be considered an abuse of
privacy in certain environments [3]. In addition, using these features
implies that the individual is made aware of being under surveillance,
which may not be desirable. Instead, video monitoring systems can
capture images of individuals in a non-intrusive way without them
being aware of being recorded. The application of computer vision
methods to these images makes it possible to extract biometric features
related to the physical characteristics of the person’s body shape, as
well as behavioral characteristics like their pose and their movement
patterns [4].

Among the many practical applications that can be developed with
this technology, person re-identification (ReId) is one of the most
challenging. Given a particular individual captured by a video camera,
ReId systems seek to match individuals across the footage recorded by
different cameras [5]. From an engineering point of view, implement-
ing these systems faces two significant problems when dealing with
real-world scenarios. On the one hand, images may be recorded at
different locations, involving changes in the camera angle, the distance
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to the subject of interest, and the image’s background [6]. On the other
hand, the images may be recorded a long time apart, which implies that
the appearance of the individuals may change [7]. As a result, relying
solely on obvious clues like clothing becomes impractical for designing
an effective ReId system.

These spatial and temporal changes also give rise to another related
issue, which is the wide range of illumination conditions that ReId
systems have to deal with. Specifically, this issue becomes pronounced
in the context of nighttime or low-light images, where obscured fig-
ures and the diminished perceptibility of specific details hampers the
performance of computer vision systems [8]. Addressing this problem
with hardware solutions is a challenging task. Increasing the exposure
time of cameras may allow more light to be captured, but it concur-
rently introduces undesired noise and motion blur artifacts into the
resultant images [9]. Similarly, utilizing infrared technologies presents
a potential remedy for low illumination scenarios; however, it entails
sacrificing important visual information, including the discernment of
color attributes associated with distinct elements [10].

This paper explores the application of deep learning techniques to
improve the quality of low-light images and boost the performance of
a ReId system working with a challenging dataset containing images
of individuals taken in diverse locations under varying illumination
conditions [11].
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In our experiments, we find that the zero-shot approach using
models trained on widely-used ReId datasets yields unsatisfactory re-
sults, consistently achieving mAP values below 9.0%, unlike in other
scenarios where better performance was observed [12]. Therefore, we
train a specific model tailored to this task, resulting in significantly
improved outcomes compared to the zero-shot approach, with a mAP
of 62.5%.

To further enhance the aforementioned results, we introduce a low-
light image enhancement pre-processing step to address night images.
This leads to an increase in mAP from 62.5% to 64.9%. Finally, con-
sidering that low-light image enhancement methods introduce noise in
the enhanced images, we add a final denoising step, resulting in a slight
improvement, achieving a final mAP of 65.8%. These results show the
great potential that deep learning methods have when combined to
generate comprehensive frameworks to solve complex problems.

The remainder of this paper is organized as follows. Section 2
conducts a review of previous related work. Section 3 introduces the
proposed ReId pipeline, integrating deep learning models for image
enhancement. Section 4 describes the dataset used to evaluate the pro-
posal. Section 5 reports our experiments and discusses our evaluation
results. Finally, Section 6 presents our concluding remarks.

2. Related work

Our work explores how using low-light image enhancement meth-
ods influences the performance of ReId models in scenarios with chal-
lenging illumination conditions. For proper contextualization, review-
ing the state of the art in both fields is necessary. We start discussing
previous work on ReId, and then we review the deep learning archi-
tectures proposed in the literature for low-light image enhancement, as
well as image deblurring and denoising.

2.1. Person re-identification

The ReId problem is understood today as matching the visual ap-
pearance of people captured with a recording device with images
acquired in different places and at different times [5]. Typically, these
recording devices are video cameras, which means that the ReId sys-
tem counts on multiple images of each individual to be identified,
something commonly referred to as the multi-shot approach [13,14].

To perform a ReId task, it is necessary to retrieve the distinctive
features of the recorded subjects and build with them a representation
of each individual that can be compared by the ReId system. It is not
feasible to define a fixed set of rules to extract these features due to the
significant variability that the images can present: camera position and
angle, occlusions, changes in the background, changes in illumination,
etc. For this reason, it has become popular to use deep learning methods
capable of learning by themselves to extract these features [1,15].

ReId can be considered a classification problem, where each individ-
ual is a category, and the deep learning model is trained to distinguish
between them [16]. More commonly, a convolutional neural network
(CNN) is fed with the images of the individuals. However, instead of
using its output, a feature vector is extracted from an intermediate
layer [17] and used to compare the individuals and rank them.

Triplet loss [18] is the most frequently used strategy to train these
networks. A triplet is a set of three images, two of the same individual
(positive samples) and one of a different individual (negative sample).
The objective of this training strategy is to achieve a transformation
from an initial representation space of the person images to a new one,
wherein images of the same individual are mapped closely together. In
contrast, images of different individuals are mapped far apart.

An essential factor to consider is the individuals’ pose in the images.
One strategy to address this problem is to estimate the pose of each
individual and realign the image to a standard pose [19]. However, it
requires increasing the complexity of the ReId system with additional
pre-processing steps and may result in deformed images that hinder
2

ReId. A more straightforward approach is to divide the images into
blocks, obtain the features of each block, and align the blocks of
the different images to reconstruct the global feature vector of each
image [20]. Since the images of individuals undergoing ReId are usually
upright, taller than wide, a clever strategy to divide the images into
blocks is to split them into horizontal bands [12].

Many works have been published in recent years [2], showing
the research community’s great interest in the subject. A variety of
problems related to the captured individuals have been addressed, such
as occlusions [21–23] and variations in viewpoint [24–26], pose [27–
30] or scale [31–34]. Issues related to the captured images have also
been addressed, like background clutter [35] and low image resolu-
tion [36,37]. However, the issue of poorly illuminated images has yet
to receive detailed discussion within this context.

2.2. Low-light image enhancement

The subjective perception of the color of an object by a particular
individual remains constant regardless of the lighting conditions. This
effect, described by the Retinex Theory [38], is the foundation of
many algorithms developed to enhance images captured in low light
conditions. Retinex algorithms decompose color images into two com-
ponents: reflectance and illumination. Reflectance describes the object’s
color, while illumination indicates the intensity of the light incident on
the object.

Traditional low-light image enhancement algorithms are compu-
tationally expensive and time-consuming [39] due to their iterative
nature. Different strategies have been proposed to reduce the compu-
tational cost, like focusing just on the illumination component [40] or
changing the color space [41]. However, the processing times of these
algorithms are still on the order of several minutes per image, making
them impractical approaches to deal with large image datasets.

In contrast, deep learning presents a viable solution to this issue.
Training a neural network for image enhancement can be accomplished
within a reasonable time frame thanks to the computational power of
GPUs facilitated by deep learning software libraries, taking into account
that it is a once-only process. After the network has been trained, the
inference time taken to enhance an image is just a few seconds.

One of the first approaches to improve low-light images using neural
networks is the LLNET architecture proposed by Lore et al. [42]. Based
on deep auto-encoders, this network can brighten and denoise natu-
ral low-light images. Subsequently, researchers have proposed novel
architectures and specialized datasets to advance this domain further.

Wei et al. [43] generated a LOw-Light dataset (LOL) with pairs of
low-light/normal-light images. This dataset was used to train Retinex-
Net, an architecture that decomposes the images following the princi-
ples of the Retinex Theory, then adjusts and reconstructs them. Chen
et al. [44] built the See-in-the-Dark (SID) dataset pairing short-exposure
images with the same long-exposure images as reference. Using this
dataset, they developed a low-light image processing pipeline based on
a neural network that operates directly on the raw sensor data. Ren
et al. [45] designed a residual encoder–decoder architecture [46]
trained with the DPED dataset [47]. The edges of the resulting images
are later refined using a spatially variant recurrent neural network to
prevent fine structure details from being lost.

Some authors have presented alternatives to the standard pattern
of direct conversion between low-light images and normal-light im-
ages. Cai et al. [48] built a neural network architecture trained with
a paired image dataset of low-contrast images and their corresponding
high-quality images. It focused on improving images with different
exposure levels, both underexposed and overexposed. Wang et al. [49]
trained a neural network not to generate improved images, but to
generate an intermediate image-to-illumination mapping that can be
used later to enhance the low-light images.

Zhang et al. [50] drew inspiration from the Retinex Theory to
propose Kind++, an architecture that splits images into two compo-

nents and processes them in separate branches. The illumination branch
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adjusts the lighting, while the reflectance branch restores degrading
effects caused by the low light during image capture, such as noise and
color distortion. This architecture is an advanced version of the Kind
network [51] that has been enhanced by adding a multi-scale illumi-
nation attention module to mitigate certain visual defects occasionally
generated by the reflectance restoration branch.

Hao et al. [52] proposed a decoupled network that divides the
image enhancement problem into two independent tasks. The first stage
focuses on improving the illumination of the scene. In contrast, the
second stage increases the appearance fidelity by suppressing other
degenerative factors that degrade the image’s visual quality, such as
noise and color distortion. This division aims to prevent the neural
network from reaching sub-optimal results while attempting to meet
multiple objectives simultaneously.

All the architectures discussed in the preceding paragraphs are
based on supervised learning, that is, the network must be instructed
on the desirable outcome for each image in the training dataset. This
is a limiting factor because it is not possible to have pairs of low-
light/normal-light images taken from real or in-the-wild environments.
Consequently, these networks are trained with artificial datasets gen-
erated under controlled conditions, which may adversely impact the
enhancement process when applied to real images.

Yang et al. [53] developed a semi-supervised framework in two
stages. The first stage, trained using pairs of low-light/normal-light
images, obtains an enhanced image from a low-light input image.
The second stage, trained using unpaired high-quality images, further
enhances the resulting image to make it more visually appealing for the
human eye.

Fully unsupervised learning approaches effectively overcome the
need for paired data to train image enhancement models [54]. Some of
these models are trained with well illuminated images and learn what
the expected result is. Jiang et al. [55] proposed EnlightenGAN, an
unsupervised generative adversarial network that enhances low-light
images after performing unpaired training with self-regularization. Guo
et al. [56] moved away from GAN architectures and presented the
zero-reference deep curve estimation method (Zero-DCE), which uses a
lightweight deep network to estimate pixel-wise and high-order curves,
enabling dynamic range adjustments. This method implicitly measures
image quality using non-reference loss functions, thus not needing a
paired image dataset for the training process.

More recently, some unsupervised frameworks that execute their
training in the opposite direction have been introduced, examining
low-light images and learning how to improve them. Liu et al. [57] pro-
posed the Retinex-inspired Unrolling with Architecture Search (RUAS),
a framework capable of developing and optimizing low-light image en-
hancement deep learning networks following the basic image decompo-
sition rule of the Retinex Theory. Adopting a similar approach, Ma et al.
[58] proposed a Self-Calibrated Illumination (SCI) learning framework.
This framework comprises an illumination estimation module and a
self-calibrated module that reduces the computational cost and allows
the models obtained using this framework to adapt to general real-
world scenes efficiently. Wen et al. [59] take another approach, further
developing the idea behind Zero-DCE to design the Self-Reference Deep
Adaptive Curve Estimation (Self-DACE) method. This method is divided
into two stages; the first one adjusts the luminosity of the scene with
newly designed adaptive adjustment curves, more flexible than those
used by Zero-DCE, while the second one aims to remove the noise from
the image.

Regardless of the chosen model, it should be remembered that low-
light image enhancement methods may have collateral consequences,
such as increasing the noise level of the images or blurring the edges of
the different elements in the scene. Deep learning approaches have also
been used recently to address these issues. Kupyn et al. [60] proposed
DeblurGAN, a relativistic conditional generative adversarial network
designed for single image motion deblurring using a Feature Pyramid
3

Network [61] generator. Chen et al. [62] simplified existing methods,
removing the nonlinear activation functions without degrading perfor-
mance, which led to a Nonlinear Activation Free Network (NAFNet)
featuring CA/GELU and Simplified Channel Attention (SCA) along with
SimpleGate.

3. Methodology

The primary objective of the ReId task is to establish correspon-
dences between individuals captured by distinct non-overlapping cam-
eras. However, a significant challenge arises when there are substantial
variations in illumination conditions across these cameras, such as
those encountered between nighttime and daytime acquisitions. Fig. 1
shows the general schema proposed in this work to improve ReId
performance addressing this challenge.

3.1. Image acquisition and preparation

The images used in this work belong to the TGC20ReId dataset [11].
The images were captured at different times of the day and night, thus
providing a varied collection of pictures acquired under good and poor
illumination conditions.

The original footage consists of full HD 1920 × 1080 resolution
images captured with Sony Alpha 6400 cameras at 50 frames per
second. Bodies are detected in these images with Faster R-CNN [63]
using Inception v2 as feature extractor [64], as proposed by Huang
et al. [65]. This body detector was trained using the COCO dataset [66].

Only images with detected bodies were considered and, in particu-
lar, those with body dimensions (height and width) greater than 30% of
the image dimensions. This resulted in many images; thus, one image
per minute was subsampled. Finally, the dataset annotators identified
the subjects of interest by hand and selected representative images for
each individual.

3.2. ReId pipeline

In the context of this paper, we define the problem of ReId as taking
the image of an individual (the probe) captured at a particular location
and comparing it to a set of images of persons (the gallery) captured at
different locations and times. The ReId process is successful when an
image in the gallery corresponding to the probe is correctly identified.

The practical implementation of a ReId system requires the devel-
opment of a methodology to represent each individual’s distinctive
features as numerical vectors that can be compared. According to the
literature’s terminology, we refer to these numerical vectors as embed-
dings. Our ReId pipeline aims to extract the embeddings corresponding
to each of the subjects of interest.

Since the primary objective of this paper does not revolve around
the computation of embeddings, we employ the AlignedReID++ ar-
chitecture as an embedding extractor [12]. This architecture uses
ResNet50 [46] as the backbone. It adopts a triplet function loss that
leverages the Dynamically Matching Local Information (DMLI) tech-
nique for dynamically aligning local information without additional
supervision. By mitigating the negative effects of inaccurate person
detection boxes, DMLI effectively reduces the limitations associated
with human pose misalignment.

In order to compute the embeddings, the images of the subjects are
cropped to suppress the images of other individuals that may interfere
with the ReId process. This cropping process uses the bounding box pro-
vided by the body detector as the cutting edge. The cropped bodies are
then resized to dimensions of 256 × 128 and fed to the AlignedReID++
architecture. The embeddings are extracted from the last convolution
layer of the ResNet50 backbone, resulting in numerical vectors with

2048 elements that comprehensively represent each individual.
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Fig. 1. Proposed schema for ReId with illumination correction.
3.3. Low-light image enhancement

For images captured under good illumination conditions, only the
embeddings are computed. When images are captured under poor illu-
mination conditions, two previous stages must be accomplished before
the embeddings are computed. The initial stage involves illumination
correction using a low-light image enhancement method, which may
introduce some noise. Therefore, a post-process is applied to remove
the introduced noise and blur.

As can be appreciated in Fig. 1, these two pre-processing stages are
applied to the full images. The bodies of the subjects of interest are
cropped after the images have been enhanced and then delivered to
the feature extractor to perform the ReId process by computing the
similarity between the reference image of the probe and all images in
the gallery.

This framework represents a significant evolution from the naive
approach we introduced in an earlier work [67]. Our previous version
overlooked the noise introduced in the enhanced images, resulting in
the omission of a crucial post-processing stage. Moreover, in our earlier
design, the enhancement method was applied to all images, irrespective
of their illumination level, leading to color artifacts in well-illuminated
original images.

It is interesting to note that the level of daylight illumination in
each image can be easily determined from the metadata of the original
footage, which includes the time and date of the recording. This infor-
mation makes it possible to implement a simple heuristic based on the
daytime without needing any laborious image relabeling process.

4. Dataset

To the best of our knowledge, the TGC20ReId dataset [11] we use
in this work is the only publicly available ReId benchmark dataset
that includes both daytime and nighttime images. This dataset features
images of runners participating in the Transgrancanaria ultra-trail race
conducted in March 2020 on Gran Canaria island. Due to the extensive
length of the race, the first runner completed it in 12 h, while the last
runner took almost 30 h.

As the conditions of an ultra-trail race are extremely tough, the run-
ners experience a wide variety of situations, resulting in many different
poses. Hence, this challenging dataset is a representative example of
the complex situations any real-world ReId system would have to face.
Furthermore, since the race started at 11 pm, the dataset encompasses
images captured under varying lighting conditions, with day and night
footage.

We have considered images captured at four recording points (RPs)
distributed along the race as indicated in Fig. 2. Due to the race’s
starting time, the runners were captured at RP1 and RP2 during the
4

Table 1
Time of passage for the first and the last runner considered at each RP.

First runner Last runner Enhanced images

RP1 0:14 1:00 All
RP2 1:19 2:46 All
RP3 10:30 17:34 None
RP4 11:44 19:33 Images captured after 19:00

night, illuminated only by artificial light and occasionally by the light
from their headlamps. The runners at RP3 and RP4 were captured in
broad daylight, except for a few runners captured at dusk in RP4.

Table 1 indicates the recording times of the first and last runners
at each RP. As an illustrative example, Fig. 3 shows images of some
runners at each RP. The points recorded during the day exhibit focused
and well-lit images, while the points recorded during the night result
in images with low light, noise issues, and even motion blur in some
cases.

Since the place and time at which each image was captured is
known, a simple heuristic can be implemented in our ReId pipeline to
ensure that image enhancement is applied solely to those images that
need it. As described in Table 1, all night images captured in RP1 and
RP2 are enhanced. In the rest of the RPs, only the images captured
at dusk in RP4 are processed. For more complex scenarios, where this
information was not known, it would be possible to implement more
intricate heuristics using image quality assessment metrics [68].

We generated our ReId test datasets by selecting a group of 109
runners detected at the four RPs from all the identities annotated in
the original dataset. In this way, the ReId performance evaluation is
conducted on a complete and closed set of identities. The resulting
dataset comprises a total of 1269 images. The ReId training dataset
consists of 3809 images encompassing 503 runners not included in the
test set. These training images were acquired at multiple RPs, but none
of the runners were captured at all four RPs. The distribution of the
number of identities and images in each RP is shown in Table 2.

ReId training is conducted with images of runners that have been
cropped from the footage captured in the different RPs. However,
we must use complete images to train the various low-light image-
enhancement methods evaluated, and thus we have generated a sep-
arate training dataset for this purpose, referred to as TGC20lime,
excluding the images from which the runners used in the test dataset
were cropped. This dataset contains 5113 complete images, as captured
by the cameras, with no additional processing. Of these, 2392 are
nighttime images and 2721 were recorded in broad daylight. Table 3
shows the distribution of these images in each RP.
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Fig. 2. Track profile of the Transgrancanaria Classic 2020 ultra-trail race (courtesy of Arista Eventos S.L.U.).
Fig. 3. Samples of cropped images captured at each RP.

Table 2
Distribution of identities and images in the ReId datasets.

RP1 RP2 RP3 RP4

TGC20ReId test identities 109 109 109 109
TGC20ReId test images 290 188 209 245
TGC20ReId train identities 102 168 339 238
TGC20ReId train images 400 450 1560 1399

Table 3
Distribution of images in the low-light image enhancement datasets.

RP1 RP2 RP3 RP4

TGC20lime night-light images 1109 1283
TGC20lime day-light images 1545 1176

5. Experiments

To assess the performance of the proposed pipeline, we use the
mean average precision (mAP), a widely used metric in ReId problems.
Given a number 𝑛 of probe individuals, mAP is calculated as:

𝑚𝐴𝑃 = 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑃𝑖

where 𝐴𝑃𝑖 denotes the area under the precision–recall curve for individ-
ual 𝑖. Hence, this metric considers the trade-off between precision and
recall, maximizing both metrics’ influence on the evaluation process.
In addition, it considers all appearances of each individual in the
gallery, recognizing that the same individual may have been captured
previously on more than one occasion.

Since the dataset has been generated from a running competi-
tion, we preserve the chronological order of the RPs, comparing each
probe RP only with the galleries corresponding to previous RPs. This
evaluation strategy leads to six tests per experiment, as shown in
Table 4.

For brevity, we only report the average and the standard deviation
of the six tests for each experiment. This average is calculated as
5

Table 4
Tests performed in each experiment.

Probe Galleries

RP2 RP1
RP3 RP1 RP2
RP4 RP1 RP2 RP3

Table 5
ReId performance using different AlignedReID++ models and the original non-enhanced
images. Each line of the table shows the average mAP value for the six tests conducted
in the corresponding experiment and the standard deviation.

Model mAP

CUHK03 9.0 ± 3.2%
Market1501 8.8 ± 3.0%
DukeMTMCReId 7.5 ± 2.0%
MSMT17 8.9 ± 3.0%

TGC20ReId 62.5 ± 13.1%

follows:

𝑚𝐴𝑃 = 1
6

4
∑

𝑖=2

𝑖−1
∑

𝑗=1
𝑚𝐴𝑃 (𝑅𝑃𝑖 𝑣𝑠. 𝑅𝑃𝑗 )

5.1. ReId models

Using off-the-shelf deep learning architectures to develop image
processing pipelines is a widespread practice in the community. How-
ever, to make the most of these architectures, it is crucial to train them
with the appropriate data for the problem they will be applied to.

Table 5 presents the performance evaluation on the TGC20ReId
test dataset of five models trained on different datasets. The first four
rows represent a cross-dataset scenario where the models are trained
with the CUHK03 dataset [15], the Market1501 dataset [69], the
DukeMTMCReId dataset [70], and the MSMT17 dataset [71].

The last row displays the results obtained when the model is trained
using the TGC20ReId train dataset. Notably, the models trained with
datasets captured under less challenging illumination conditions than
the TGC20ReId dataset exhibit a substantially lower performance, high-
lighting the importance of training the ReId models with appropriate
data for the specific scenario under evaluation.

The 62.5% average mAP provided by our model is an excellent
result for the harsh conditions imposed by the selected dataset. It is
important to keep in mind that not only there are significant variations
in the illumination of the different RPs, affecting the perception of the
colors of clothing and equipment, but also that this dataset is subject to
moderate clothing changes, as runners may swap their outfits between
two RPs, making the task even more challenging. Improving perfor-
mance under these constraints is very difficult and every percentage
point gained matters.

5.2. Low-light image enhancement

Table 6 shows the average mAP value achieved by our proposed
pipeline applying various low-light image enhancement methods. We
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Fig. 4. Original image of a group of runners at RP2 and the corresponding re-lighted versions generated with supervised low-light image enhancement methods.
Table 6
ReId performance using low-light image enhancement methods. The first column of
results shows the average mAP value for the six tests conducted in the experiment
when only the corresponding low-light image enhancement method is applied. The
remaining columns show the mAP when the enhanced images are later post-processed
with a deblurring or denoising method; performance improvements are shown in
green, and performance degradations are shown in red. The best performance value is
underlined.

Enhancement Train mAP Deblur NAFNet NAFNet
method dataset GANv2 denoising deblurring

Retinex-Net (2018) LOL 38.8 38.8 38.7 38.9
Self-DACE (2023) SICE 50.7 50.7 50.9 51.0
RUAS (2021) LOL 51.2 51.2 50.9 50.7
RUAS (2021) DarkFace 51.3 51.3 51.3 48.9
Self-DACE (2023) TGC20lime 52.0 52.1 52.6 52.8
EnlightenGAN (2021) custom 53.6 53.5 53.1 53.8
Kind++ (2021) LOL 54.3 54.2 53.9 54.1
Decoupled Net (2022) LOL 58.9 58.8 59.3 59.0
Zero-DCE (2020) SICE 58.9 58.9 59.3 59.6
RUAS (2021) MIT5K 59.4 59.5 59.2 59.6
EnlightenGAN (2021) TGC20lime 59.8 59.6 57.9 58.9
RUAS (2021) TGC20lime 60.2 60.2 59.6 60.2
SCI (2022) medium 60.2 60.3 60.8 61.0
SCI (2022) difficult 61.5 61.5 61.3 62.4
SCI (2022) easy 63.9 64.0 62.8 63.6
SCI (2022) TGC20lime 64.7 64.7 62.6 63.8
Zero-DCE (2020) TGC20lime 64.9 64.7 64.3 65.8

have evaluated three methods trained using pairs of low/normal-light
images selected from the LOL dataset [43]. These methods are Retinex-
Net [43], Kind++ [50], and the decoupled low-light image enhance-
ment network [52]. Applying these methods fails to improve ReId
performance and degrades it.

Fig. 4 shows a nighttime image of some runners who are barely
distinguishable in the original footage, as well as the resulting im-
ages after processing the original footage with the three supervised
methods. The low-light image enhancement methods increase the vis-
ibility of the runners, but only the decoupled network provides an
acceptable result, albeit with saturated colors. The other two methods
show overly saturated colors and considerable noise. Generating new
models for adapting these methods to our ReId scenario is not feasible
because we are working with outdoor images. In a real uncontrolled
environment, obtaining two versions of each image, one with natural
lighting conditions and another with desirable lighting, would be highly
complicated.

The best strategy for improving ReId performance using enhanced
images is to tailor the low-light image enhancement methods to the
working scenario. This can only be accomplished with unsupervised
learning methods that do not require paired data for training. We have
evaluated three unsupervised methods that are trained on nighttime
images: RUAS [57], SCI [58], and Self-DACE [59]. The authors of
the RUAS framework used it to generate three models derived from
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the LOL dataset [43], the MIT-Adobe 5K dataset [72], and the Dark-
Face dataset [73] respectively. The authors of the SCI framework also
generated three models, based this time on three levels of difficulty sub-
jectively selected: the easy model was generated from the MIT-Adobe
5K dataset, the medium model was generated from the LOL dataset and
the LSRW dataset [74], and the difficult model was generated from
the DarkFace dataset. The authors of Self-DACE trained the method
to generate a single model based on the SICE dataset [48]. We have
adapted these methods to our working scenario by training them with
the nighttime TGC20lime dataset.

Table 6 shows that most of the models trained by the original
authors of these image enhancement methods result in a ReId perfor-
mance degradation, falling below the average 62.5% mAP achieved us-
ing the original non-enhanced images. These results prove that merely
applying an image enhancement method selected from the literature
does not guarantee good outcomes. It is possible to achieve an improve-
ment using a zero-shot model, as seen with the SCI method trained with
the easy dataset. However, obtaining this improvement would require
a trial-and-error approach, applying various methods until one delivers
satisfactory results.

Fig. 5 shows that SCI provides strong output, while RUAS and Self-
DACE tend to brighten the images excessively, providing overexposed
results that alter the colors and hinder ReId performance. In contrast,
models generated using the TGC20lime dataset better preserve the
original colors. Table 6 shows that the TGC20lime model consistently
performs best for each method. The best result is provided by the SCI
TGC20lime model, achieving 64.7% average mAP.

We have evaluated two unsupervised methods that were originally
trained with well-lit images, Zero-DCE and EnlightenGAN. Guo et al.
[56] trained their Zero-DCE model using 3022 images with varying
exposure levels selected from the SICE dataset [48]. As for Jiang et al.
[55], they trained their EnlightenGAN model using 1930 images man-
ually selected from the RAISE dataset [75] and the LOL dataset [43],
as well as high dynamic range images from the SICE dataset [48] and
the dataset generated by Kalantari and Ramamoorthi [76]. In order
to adapt these methods to our particular scenario, we have generated
new models training Zero-DCE and EnlightenGAN with the daytime
TGC20lime dataset.

As shown in Table 6, the best mAP results are obtained by the
Zero-DCE enhancement method trained using the TGC20lime dataset,
a 64.9% mAP value, reasserting the importance of training specific
models for the particular task at hand. Zero-DCE does not rely on
reference images during training thanks to its carefully formulated non-
reference loss functions that measure enhancement quality, making this
method more versatile. However, the model trained by the authors tend
to over-saturate the colors, resulting in visually appealing images at
the cost of not preserving the original tones. Our Zero-DCE TGC20lime
model may generate less eye-catching images, but it better preserves
the colors, facilitating ReId with images from other locations.
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Fig. 5. Image of a group of runners at RP2 re-lighted with unsupervised low-light image enhancement methods. The first row shows the results of unsupervised methods as
trained by their authors; when multiple models were available, we selected the best-performing ones, i.e., MIT5K for RUAS and easy for SCI. The second row shows the results of
unsupervised methods trained using the TGC20lime dataset.
The EnlightenGAN TGC20lime model also significantly improves
over the model trained by the authors, but the resulting images show
certain artifacts. As can be observed in Fig. 5, the EnlightenGAN
TGC20lime model does not uniformly improve the lighting of the whole
scene, rather seems to focus on the sky and the cobblestones, main-
taining a dark section in the area of the runners with a distinguishable
boundary at the top. The uneven quality of the image enhancement,
with more pronounced improvements in the floor and sky compared
to the runners, likely arises from the entanglement problem associated
with GANs. These networks consist of a generator and a discriminator
that work collaboratively to generate images. However, this collabo-
rative nature can result in prioritizing particular image features over
others, leading to a disparity in the extent of improvement across
different parts of the image [77]. In the case of the image mentioned
above, the GAN may have overemphasized enhancing some elements,
such as the floor and sky, while not allocating sufficient resources
to enhancing the runners, underscoring the challenge of achieving a
balanced and uniform enhancement of all elements in the image. This
effect ultimately prevents the EnlightenGAN TGC20lime model from
reaching the performance achieved by the Zero-DCE TGC20lime model.

5.3. Image denoising and deblurring

Our Zero-DCE TGC20lime model provides the best ReId perfor-
mance of all the state-of-the-art deep learning methods evaluated, but
there is still room for further improvement. Images captured in low-
light conditions and enhanced with software methods often exhibit
issues such as noise or blurriness. To address these problems, addi-
tional enhancement methods can be applied, such as deblurring and
denoising.

Firstly, we utilize DeblurGAN [60], whose integration of a Feature
Pyramid Network within its generator enables the utilization of differ-
ent backbones, striking a balance between performance and efficiency
based on backbone complexity. The authors trained the DeblurGANv2
architecture with a dataset of approximately 10000 clear/blurry image
pairs selected from the GoPro dataset [78], the DVD dataset [79], and
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the NFS dataset [80]. The blurry images were generated by interpolat-
ing the frames [81] of the original 240 fps videos to generate 3840 fps
videos and then averaging consecutive frames to simulate the effects of
high-exposure image recording.

Secondly, we employ NAFNet [62], which adopts a classical single-
stage U-shaped architecture with skip-connections but without non-
linear activation functions, which reduces complexity and improves
computational efficiency. The NAFNet architecture can be used for
various image enhancement tasks based on the dataset used to train it.
On the one hand, the authors trained NAFNet with the GoPro dataset
mentioned above [78] to generate an image deblurring model. On the
other hand, they trained NAFNet with the SIDD dataset [82] to generate
an image denoising model. In both cases, these are datasets with paired
images, one blurred/noisy image and one clear image representing the
desirable result.

The last three columns of Table 6 show the results obtained by
applying these denoising/deblurring models after processing the images
using the different low-light image enhancement models. We have not
trained any denoising/deblurring models because we do not have high-
quality clear images to pair with the noisy/blurry images found in the
TGC20lime dataset.

In general, the effect is minimal, but a clear pattern in the perfor-
mance variations can be observed. The DeblurGANv2 network and the
NAFNet denoising models do not provide good results. They improve
ReId performance for four and five low-light image enhancement meth-
ods respectively, but the former degrades ReId performance for five
methods and the latter for eleven methods. On the other hand, the
NAFNet deblurring model provides a performance improvement for ten
of the evaluated methods, including our Zero-DCE TGC20lime model.

In order to provide more insight into this behavior, Fig. 6 shows the
original image of a runner captured in RP2, the improved version after
applying our Zero-DCE TGC20lime model, and the result of applying
different denoising and deblurring methods. The only of the three
methods evaluated that has an appreciable effect at first glance is the
NAFNet deblurring model, making it the best candidate for integration
in our ReId framework.
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Fig. 6. Image of an individual captured at RP2 with various denoising/deblurring methods. The first image shows the original footage, and the second image shows the footage
enhanced using the Zero-DCE architecture trained with the TGC20lime dataset. After low-light image enhancement, the remaining images show the results of applying different
denoising/deblurring methods.
Table 7
Detailed mAP, original images.

Gallery

RP1 RP2 RP3

Probe
RP2 65.0% – –
RP3 53.8% 54.6% –
RP4 51.0% 58.8% 91.6%

Table 8
Detailed mAP, enhanced images.

Gallery

RP1 RP2 RP3

Probe
RP2 66.0% – –
RP3 56.4% 61.8% –
RP4 56.7% 62.0% 91.8%

5.4. Discussion by RP

We have achieved the best results by enhancing low-light images
using the Zero-DCE architecture trained with daytime images from
the TGC20lime dataset and applying the NAFNet deblurring model.
Tables 7 and 8 present detailed results per RP for the original non-
enhanced and enhanced images, respectively.

As anticipated, the improvement is primarily observed in combina-
tions involving nighttime RPs as probe or gallery, along with daytime
RPs as probe or gallery. For instance, when comparing RP3 with RP2,
the mAP increases from 54.6% to 61.8% after processing the images
with the enhancement pipeline. Similarly, when comparing RP4 with
RP1, the mAP improves from 51.0% to 56.7%.

Tables 9 and 10 present ranking metrics for the original non-
enhanced images and the enhanced images. For each RP, the tables
show the percentage of instances in which the correct individual was
placed in the first position (Rank-1), among the first five positions
(Rank-5), and among the first ten positions (Rank-10) of the match list.
Improvements are observed not only in Rank-1, but also in Rank-5 and
even Rank-10 for some combinations, showing the robustness of our
system. For example, when comparing RP3 with RP1, Rank-5 rises from
72.1% to 77.9% and Rank-10 rises from 78.4% to 82.7%.

Regarding the comparison between the two RPs filmed during day-
time, the observed improvement is slight because this combination
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Table 9
Detailed ranking (Rank-1/Rank-5/Rank-10), original images.

Gallery

RP1 RP2 RP3

Probe
RP2 69.0/84.5/89.3 – –
RP3 59.1/72.1/78.4 48.1/74.0/81.7 –
RP4 54.1/73.0/82.8 54.9/73.0/77.5 91.0/97.1/98.8

Table 10
Detailed ranking (Rank-1/Rank-5/Rank-10), enhanced images.

Gallery

RP1 RP2 RP3

Probe
RP2 71.7/85.0/90.9 – –
RP3 60.1/77.9/82.7 60.6/76.9/82.7 –
RP4 60.9/80.2/84.0 57.6/74.5/80.2 91.4/97.1/98.8

presents the highest baseline value by far. Nevertheless, this improve-
ment shows the model’s adaptability to illumination variations in the
input images. In the daytime RPs, image enhancement is only applied
to the runners recorded in RP4 during dusk. The illumination level of
the original images changes significantly during this period, as can be
seen in Fig. 7, but the results provided by the enhancement process
exhibit uniform illumination, which facilitates ReId. A variation in
the background shade is observed in the later images, where artificial
illumination has more influence, but the subjects are unaffected.

6. Conclusions

Indubitably, the ability to discern the identity of an individual
across diverse temporal and spatial junctures is crucial for any video
surveillance system in diverse contexts, making it one of the top pri-
orities for academic and industrial research in computer vision. There
is a plethora of works on this subject in the literature. However, they
tend to present particular solutions to specific problems, which are
evaluated using datasets that are not representative of the challenges
any real-world video surveillance system would encounter.

This work combines different elements into a single framework
designed to handle images captured under highly variable lighting
conditions. Our framework provides significant ReId performance im-
provements thanks to new models trained with datasets composed
of both daytime and nighttime images. Finally, the performance is
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Fig. 7. Original images recorded at dusk in RP4 (upper row) and their corresponding
enhanced versions pre-processed with our Zero-DCE TGC20lime model and the NAFNet
deblurring model (lower row). Each column shows the approximate passing time of the
depicted individual.

increased even more by integrating deep learning techniques in the
ReId pipeline to enhance the quality of nighttime images. The achieved
results evidence the significant potential of this strategy to improve the
performance of current ReId systems.
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