Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130595
Campo DC Valoridioma
dc.contributor.authorHernández López, Ruymánen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2024-05-21T07:21:32Z-
dc.date.available2024-05-21T07:21:32Z-
dc.date.issued2024en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/130595-
dc.description.abstractThe Canary Islands are considered a hotspot of biodiversity and have high levels of endemicity, including endemic reptile species. Nowadays, some invasive alien species of reptiles are proliferating with no control in different parts of the territory, creating a dangerous situation for the ecosystems of this archipelago. Despite the fact that the regional authorities have initiated actions to try to control the proliferation of invasive species, the problem has not been solved as it depends on sporadic sightings, and it is impossible to determine when these species appear. Since no studies for automatically identifying certain species of reptiles endemic to the Canary Islands have been found in the current state-of-the-art, from the Signals and Communications Department of the Las Palmas de Gran Canaria University (ULPGC), we consider the possibility of developing a detection system based on automatic species recognition using deep learning (DL) techniques. So this research conducts an initial identification study of some species of interest by implementing different neural network models based on transfer learning approaches. This study concludes with a comparison in which the best performance is achieved by integrating the EfficientNetV2B3 base model, which has a mean Accuracy of 98.75%.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors [ISSN 1424-8220], v. 24 (5), (Marzo 2024)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherTransfer Learningen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherWildlife Recognitionen_US
dc.subject.otherAnimal Identificationen_US
dc.subject.otherCanarian Endemic Speciesen_US
dc.subject.otherInvasive Alien Speciesen_US
dc.subject.otherBiodiversity Conservationen_US
dc.subject.otherTensorflowen_US
dc.subject.otherKerasen_US
dc.titleReptile Identification for Endemic and Invasive Alien Species Using Transfer Learning Approachesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s24051372en_US
dc.identifier.isi001182931300001-
dc.identifier.eissn1424-8220-
dc.identifier.issue5-
dc.relation.volume24en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid56150892-
dc.contributor.daisngid31805132-
dc.description.numberofpages20en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Hernández-López, R-
dc.contributor.wosstandardWOS:Travieso-González, CM-
dc.date.coverdateMarzo 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,786-
dc.description.jcr3,847-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,8-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameHernández López, Ruymán-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (2,02 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.