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Abstract: The Canary Islands are considered a hotspot of biodiversity and have high levels of
endemicity, including endemic reptile species. Nowadays, some invasive alien species of reptiles are
proliferating with no control in different parts of the territory, creating a dangerous situation for the
ecosystems of this archipelago. Despite the fact that the regional authorities have initiated actions to
try to control the proliferation of invasive species, the problem has not been solved as it depends on
sporadic sightings, and it is impossible to determine when these species appear. Since no studies for
automatically identifying certain species of reptiles endemic to the Canary Islands have been found
in the current state-of-the-art, from the Signals and Communications Department of the Las Palmas
de Gran Canaria University (ULPGC), we consider the possibility of developing a detection system
based on automatic species recognition using deep learning (DL) techniques. So this research conducts
an initial identification study of some species of interest by implementing different neural network
models based on transfer learning approaches. This study concludes with a comparison in which
the best performance is achieved by integrating the EfficientNetV2B3 base model, which has a mean
Accuracy of 98.75%.

Keywords: transfer learning; deep learning; wildlife recognition; animal identification; Canarian
endemic species; invasive alien species; biodiversity conservation; TensorFlow; Keras

1. Introduction

An ecosystem is a complex biological system characterized by both biotic components,
forming a community of living organisms, and abiotic components, comprising the non-
living elements present in the natural environment. Together, these components operate as
a cohesive unit. However, when a species transcends biogeographical barriers and enters
a new region, it can disrupt the delicate balance of the ecosystem. This disruption mani-
fests as alterations to ecosystem functioning and the provision of ecosystem services and
impacts processes such as nutrient and contaminant cycling, hydrology, habitat structure
and disturbance regimes. Invasive alien species (IAS) break down biogeographic realms,
affect native species richness and abundance, increase the risk of native species extinction,
affect the genetic composition of native populations, change native animal behaviour, alter
phylogenetic diversity across communities and modify trophic networks [1].

The Canary Islands are considered a hotspot of biodiversity [2], and the high diversity
of habitats, geological isolation from any major landmass, interspecific competition and
adaptive radiation are some of the causal factors that have been suggested to explain the
high levels of endemicity found in this archipelago [3]. The reptiles inhabiting the Canary
Islands form a distinct group of 15 living species characterized by well-defined insular
distributions. Among these, 14 species are endemic and exhibit limited capacity to disperse
across marine barriers. Notably, the distribution pattern of these endemic reptiles includes
the sharing of several islands by the same species [4] where some native herpetofauna
species are considered endangered.
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Currently, some IAS of reptiles are proliferating with no control in different parts of the
territory, creating a dangerous situation for the ecosystems of this archipelago. The intro-
duction of invasive species to islands, coupled with the loss and fragmentation of natural
habitats, constitutes one of the most severe threats to the conservation of biological diversity.
Furthermore, the vulnerability to invasion is significantly heightened in the Canary Islands
due to the distinctive ecological conditions under which island organisms have evolved.
In other words, the absence of adaptations to predators, low genetic diversity and increased
susceptibility to exotic pathogens, among other factors, amplify the detrimental effects of
biological invasions in the Canary Islands compared to continental ecosystems [5]. Never-
theless, efforts to mitigate this problem encounter numerous obstacles given that it involves
a complex interplay of technical, political, economic and social aspects. The multifaceted
nature of the issue transcends the jurisdiction of a single administration or even a single
country. The challenge in implementing barriers to free trade among European Union mem-
ber countries, coupled with the impracticality of comprehensive surveillance to prevent the
introduction and release of species, significantly constrains the possibilities for effective
action in this regard [6].

The regional authorities have taken proactive measures to control the proliferation of
invasive species, exemplified by the establishment of the Canary Islands Early Warning
Network for the Detection and Intervention of Invasive Alien Species, known as RedEXOS
(La Red de Alerta Temprana de Canarias para la Detección e Intervención de Especies
Exóticas Invasoras) [5]. The management strategies employed rely on an information
system designed for monitoring invasive alien species in the Canary Islands. This system
functions as an administrative communication mechanism and hinges on the voluntary
participation of individuals who report the presence of specimens when sightings occur.
Nevertheless, the issue persists, as the population sizes of certain invasive species remain
uncertain, and there is an ongoing threat to native species, as the invasive species continue
to jeopardize the ecological balance.

Given the impossibility of precisely determining the times at which these species
appear and recognizing that the warnings issued through the Canary Islands Early Warning
Network rely on sporadic sightings by volunteers, from the Signals and Communications
Department of the Las Palmas de Gran Canaria University, we consider the possibility of
developing a detection system based on automatic species recognition using deep learning
(DL) techniques with the aim of enhancing the efficiency of monitoring and controlling the
relevant species in the Canary Islands.

To address the challenges posed by the absence of sightings or the reported presence
of relevant species, we propose the implementation of an automatic monitoring system.
This system would utilize volumetric motion sensors and camera traps to detect and record
the presence of species more proactively and continuously. Volumetric motion sensors can
be employed to activate camera traps upon detecting the presence of species in predefined
spaces. The integration of these motion sensors with camera traps allows for the automated
recording of images when triggered by the detected motion. This particular camera type
provides the capability for continuous real-time monitoring. By incorporating automatic
identification algorithms, the system can promptly activate an alert signal that notifies
system administrators of the presence of any of the relevant species. The identification of
species through strategically placed cameras in the Canary Islands will empower regional
authorities to implement targeted measures. This includes actions like capturing the
identified specimens and providing improved ecosystem monitoring.

To initiate the research, this paper suggests conducting an initial identification study
focused on certain species of faunistic interest using various classification models. Two of
these species are documented as having particular significance in the state catalogue, while
the other two are included in the Spanish catalogue of invasive alien species.
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1.1. Related Work

To know that the most relevant techniques are being employed, a study on the state-
of-the-art has been conducted. The current state-of-the-art for automatic recognition based
on computer vision encompasses numerous studies focused on species identification,
and among the commonly used techniques for both species and individual identification,
the following can be found in this review [7]:

• Support Vector Machine (SVM);
• Scale-Invariant Feature Transform (SIFT);
• Ensemble of Exemplanar Support Vector Machine (EESVM);
• Random Forest Algorithm;
• Optical Flow;
• k-nearest neighbour classifier (kNN).

On the other hand, in the domain of deep learning, the following can be highlighted:

• Convolutional Neural Network (CNN);
• Recurrent Convolutional Network (RCN);
• VGG-Face Convolutional Neural Network;
• Deep segmentation convolutional neural network;
• You Only Look Once (YOLO).

Deep learning relies on multilayered, connected processing units called Artificial
Neural Networks (ANNs), and this subset of machine learning (ML) techniques is at the
core of emerging technologies such as self-driving cars and is responsible for significant
improvements to widely used information technology tools such as image and speech
recognition and automated language translation [8]. However, in comparison to traditional
machine learning techniques, deep learning has surpassed the state-of-the-art in the realm
of detecting wildlife species [9].

As an example, in this study [10], WilDect-YOLO, a deep learning (DL)-based auto-
mated high-performance detection model for real-time endangered wildlife detection was
developed and obtained a mean average Precision value of 96.89%.

In addition, automatic detection can be applied to accurately count the number of
animals in a herd, as demonstrated in this research [11] in which various types of CNNs
were implemented to achieve precise detection and counting of African mammals through
analysis of aerial imagery. Even in scenarios demanding the monitoring of expansive
populations of terrestrial mammals, a combination of satellite remote sensing and deep
learning techniques can be employed [12].

Furthermore, the Transfer Learning method can be effectively combined with some of
the aforementioned techniques. Indeed, Transfer Learning has found application in various
works across diverse domains. In the realm of wildlife identification, this method has been
utilized for fish identification in tropical waters [13], distinguishing between different dog
breeds [14] and accurately identifying various bird species [15].

Regarding the species under study, the state-of-the-art showcases a diverse range of
research efforts focused on the identification of various species. Numerous works in the
field have successfully identified different snake species, as exemplified by this work [16],
and there is even some other research in which different species of herpetofauna can be
recognised, such as [17].

1.2. Contributions

The research presented in this paper has been conducted with the goal of automatically
classifying images of various species, including both invasive alien species and endemic
species, found in the Canary Islands through computer vision techniques.

The conceptual schematic diagram of the work carried out is given in Figure 1.
As can be seen in the outline, the research methodology involves several key steps.

Initially, a database is curated, comprising images of the species under investigation. Dur-
ing this process, the samples are meticulously labelled, with each species assigned to a
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distinct class. Once the database is compiled, various classification models are imple-
mented. Subsequently, the samples are input into these models to undergo classification.
The outcomes of the classification process are then evaluated using different metrics. Finally,
a comprehensive comparison of the various models employed in the study is conducted
based on the evaluation metrics to assess and rank their performance. This structured ap-
proach ensures a thorough and systematic analysis of the effectiveness of the implemented
classification models.

Figure 1. Conceptual schematic representation of the work carried out.

The novelty of this study, in comparison to the existing state-of-the-art, resides in
the specific focus on the types of species being classified. While numerous studies exist
for various species globally, such as fish, mammals, birds and herpetofauna, there is a
distinctive gap in the literature when it comes to applying deep learning techniques for
discriminating between species endemic to the Canary Islands and IAS introduced into
this archipelago.

This research stands out as a pioneering effort for addressing the unique ecological
context of the Canary Islands, where both endemic and invasive species coexist. By apply-
ing deep learning techniques to this specific scenario, the study aims to contribute novel
insights into the automated classification of species within this distinct geographical and
ecological setting. This targeted focus enhances the significance and originality of the
research in the broader context of species classification using deep learning methods.

Hence, the purpose of this research is to conduct an initial approach, applying deep
learning techniques commonly used in species identification, to identify relevant species
in the Canary Islands so as to be able to monitor the ecosystems of this archipelago more
efficiently. This research is dedicated to exploring the effectiveness of applying various
models for the classification of species in images, with a specific emphasis on discerning
which models yield the most favourable results.

This paper is structured as follows: First, a section on materials and methods will
provide an overview of the materials used and the methodology employed in the research.
Following this, the experimental methodology will elaborate on the experimental proce-
dures and detail how the experiments were conducted. Then, there is a section dedicated
to the results obtained from the experiments. And finally, the discussion section will delve
into an analysis and interpretation of the results and offer insights and implications arising
from the research.

2. Materials and Methods

This section introduces the samples constituting the database and evaluates their
relevance for this research. Additionally, it provides an overview of the deep learning
techniques and models that have been implemented in the study.



Sensors 2024, 24, 1372 5 of 20

2.1. Datasets and Data Selection

In the domain of pattern recognition, the presence of a well-suited learning dataset
is pivotal. The training dataset, derived from the original dataset, plays a central role in
training, evaluating and ultimately constructing the classifier.

Nowadays, access to diverse public databases facilitates the acquisition of images
depicting various species. However, for the purposes of this study, a specific database
has been meticulously curated. This database is constructed from images of four species
sourced from different websites on the internet. The deliberate compilation of this custom
database allows for a targeted and controlled dataset that is tailored to the specific objectives
of the research.

The selected reptile species included in the database are of ecological significance
as they either inhabit or have been observed on Gran Canaria island. Specifically, two
of these species are documented as having particular ecological importance and are reg-
istered as such in the state catalogue [18]: the Gran Canaria giant lizard, Gallotia stehlini
(Schenkel, 1901) and the Gran Canaria skink, Chalcides sexlineatus (Steindachner, 1891). The re-
maining two species in the dataset are the Yemen chameleon, Chamaeleo calyptratus (Duméril
& Duméril, 1851) and the ball python, Python regius (Shaw, 1802). Both of these species are
categorized as invasive alien species of concern for the outermost region of the Canary
Islands as outlined in the Spanish catalogue of invasive alien species [19].

From the original dataset, the training dataset is derived. This subset of data is
employed to train, evaluate and consequently construct the classifier. In these initial experi-
ments, the data comprising the original dataset were obtained by downloading images from
various websites. The searches conducted to gather these data did not prioritize specific
entities or sources. The primary focus of this study is on evaluating the discrimination
capacity of Keras models for the classification of reptiles, specifically these species, which
exhibit some degree of dissimilarity. Notably, certain data used in the study have been
sourced from specialized websites such as:

• www.reptile-database.reptarium.cz (accessed on 18 February 2024);
• www.biodiversidadcanarias.es (accessed on 18 February 2024);
• www.inaturalist.org (accessed on 18 February 2024).

Additionally, in some other cases, images have been sourced from non-specialized
websites, including platforms such as Wikipedia or Flickr.

Despite the variation in data sources, whether from specialized sites or non-specialized
platforms, the samples provided exhibit a wide array of snapshots. These images en-
compass different perspectives, angles, and foregrounds and present the specimens in
high-quality images where they can be easily distinguished by the human eye. This is the
Good Insight Dataset, and some sample examples are shown in Figure A1 of Appendix A.1
(Appendix A).

• Endemic species (examples shown in Figure A1a–d):

– The Gran Canaria giant lizard is shown in the photos of both Figure A1a and
Figure A1b, where both specimen No. 1 and specimen No. 2 have been pho-
tographed in their respective right profiles.

– The Gran Canaria skink is presented in the photos of both Figure A1c, where
the left profile of specimen No. 3 is shown, and Figure A1d, where a top-down
perspective of specimen No. 4 is shown.

• Invasive alien species (examples shown in Figures A1e–h):

– The Yemen chameleon is displayed in the images of both Figure A1e, where the
right profile of specimen No. 5 is shown, and Figure A1f, where the left profile of
specimen No. 6 is shown.

– The ball python is exhibited in the photos of both Figure A1g, where a top-down
perspective of specimen No. 7 is shown, and Figure A1h, where a top-down
perspective of specimen No. 8 is shown.

www.reptile-database.reptarium.cz
www.biodiversidadcanarias.es
www.inaturalist.org
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In contrast, certain pictures depict specimens in ways that pose challenges for human
recognition, or it has been anticipated that these instances might present difficulties for
models to accurately classify them. To locate images under such challenging conditions,
snapshots were searched using the Google Images website. The underlying concept is to
evaluate the performance of these models not only under optimal conditions where species
are easily distinguishable but also under challenging scenarios where visibility conditions
are adverse. This approach aims to simulate real-world situations where recognition
difficulties may arise.

In these instances, some of the samples include shots captured under unfavourable
light conditions, specimens with their bodies partially obscured by objects, specimen
photos captured too close to the camera or cases where more than one specimen has been
photographed. This is the Wild Dataset, and some sample examples are shown in Figure A2
of Appendix A.2 (Appendix A).

• Endemic species (examples shown in Figure A2a–d):

– The Gran Canaria giant lizard is shown in the photos of both Figure A2a, where
specimen No. 9 appears with the body out of focus, and Figure A2b, where
specimen No. 10 presents a perspective from behind.

– The Gran Canaria skink is presented in the photos of both Figure A2c, where
only the head and the front part of the body of specimen No. 3 can be seen, and
Figure A2d, where some branches partly interrupt the view of specimen No. 11.

• Invasive alien species (examples shown in Figures A2e–h):

– The Yemen chameleon is displayed in the images of both Figure A2e, where part
of the face of specimen No. 12 is focused too closely, and Figure A2f, where some
branches partly interrupt the view of specimen No. 13.

– The ball python is exhibited in the photos of both Figure A2g, where there are two
specimens—specimen No. 8 is shown together with a new specimen: specimen
No. 14—and Figure A2h, where some branches and leaves partly interrupt the
view of specimen No. 15.

For the experiments in this research, a balanced dataset with 40 samples per class
of the species under study was employed. The original images from which the database
was comprised exhibit variations in resolution, with the number of pixels per sample
ranging from 38,160 to 45,441,024. The sizes of these particular samples are specified as
240 × 159 and 8256 × 5504, respectively. To standardize the input for the classifier, all
samples were resized to a uniform size of 200 × 200. Hence, this work utilized a total of
160 RGB images encoded as JPEGs and standardized to a resolution of 200 × 200 pixels.
The selected samples, which constitute the dataset for this study, are summarized in Table 1.

Table 1. Dataset of the selected samples.

Class Number of Samples Colour Model Format Aspect Ratio (pixels)

G. stehlini 40 RGB JPEG 200 × 200
C. sexlineatus 40 RGB JPEG 200 × 200
C. calyptratus 40 RGB JPEG 200 × 200
P. regius 40 RGB JPEG 200 × 200

Concerning the authenticity of the sample labels, it must be said that while veri-
fication may have been conducted on the specialized pages from which the data were
downloaded, no herpetofauna experts were directly involved in this research to provide
detailed identification of the species depicted in each image within the database. Nonethe-
less, the individuals responsible for downloading the images are natives of Gran Canaria
(Canary Islands) and have been able to perfectly identify the endemic species that are the
subject of this study: both the Gran Canaria giant lizard and the Gran Canaria skink. Their
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local knowledge and familiarity with the unique herpetofauna of the region contribute to a
reliable identification process for these specific species.

In the context of this study, regarding invasive alien species, it is deemed that the
downloaded samples corresponding to these species exhibit distinctive body patterns
compared to others in this database. Specifically, one of them is the sole chameleon, and the
other is the only snake, making all of them considered as “ground truth” [20] within the
scope of this research. It is necessary to recall the definition of the concept, as ground
truth is a conceptual term related to the knowledge of the truth concerning a specific
question. It is the ideal expected result [21]. Ground truth or reference data are the basis for
performance analysis in computer vision and image processing. This term originally stems
from geography, where information drawn from satellite images is confirmed by people
visiting the location to be studied on the ground [22].

2.2. Recognition of Species Using Deep Learning Approaches

The machine learning platform behind the classification algorithms implemented in
this research is TensorFlow v2.15.TensorFlow is an end-to-end open-source platform for
machine learning that has a comprehensive, flexible ecosystem of tools, libraries and com-
munity resources that lets researchers push the state-of-the-art in ML and developers easily
build and deploy ML-powered applications [23]. The implementation of the classifica-
tion models was based on Keras [24], which is a deep learning API (Application Program-
ming Interface) written in Python and running on top of the machine learning platform
TensorFlow [25].

While TensorFlow is an infrastructure layer for differentiable programming and deals
with tensors, variables and gradients, Keras is a user interface for deep learning and
deals with layers, models, optimizers, loss functions and metrics, among other factors. So
Keras serves as the high-level API for TensorFlow. Keras applications are transfer learning
models that are made available alongside pre-trained weights. These models can be used
for prediction, feature extraction and fine tuning.

Deep learning, and specifically, Convolutional Neural Networks, have drastically
improved how intelligent algorithms learn. A CNN is a class of Artificial Neural Network
(ANN) that is most commonly used for image analysis and learns directly from data.
In addition, with convolutional layers, pooling layers and fully connected layers, CNNs
allow computational models to represent data with multiple levels of abstraction.

On the other hand, CNNs are commonly developed at a fixed resource budget and
then scaled up for better Accuracy if more resources are available.

Transfer Learning and Recognition Models

The pre-trained models used in this survey apply the deep learning technique on which
the classifiers implemented in this study are based, which is called Transfer Learning.

Many machine learning methods work well only under a common assumption: the
training and test data are drawn from the same feature space and the same distribution.
When the distribution changes, most statistical models need to be rebuilt from scratch
using newly collected training data. In many real-world applications, it is expensive or
impossible to recollect the needed training data and rebuild the models. It would be nice to
reduce the need and effort to recollect the training data. In such cases, knowledge transfer
or transfer learning between task domains would be desirable [26].

Transfer Learning is a machine learning method whereby a learning model developed
for a first learning task is reused as the starting point for a learning model in a second
learning task [27]. This is possible because of the re-use of pre-trained weights. Pre-trained
weights refer to using pre-trained neural networks, which have been previously trained
with some kind of data. Therefore, it can be said that learning is transferred and is available
for new experiments with other types of data. Furthermore, transfer learning enables
experiments to be developed with databases with few samples, such as the one available
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for this research. This is because some of these pre-trained models have been trained with
datasets from the web containing about a million images and 1000 different classes [28].

The following is a formal explanation of the Transfer Learning technique [29]:
A domain D is defined by two parts: a feature space X and a marginal probability

distribution P(X), where X = {x1, ..., xn} ∈ X, xi is the i − th feature vector (instance), n is
the number of feature vectors in X, X is the space of all possible feature vectors, and X is a
particular learning sample. For a given domain D, a task T is defined by two parts: a label
space Y and a predictive function f (·), which is learned from the feature vector and label
pairs {xi, yi}, where xi ∈ X and yi ∈ Y.

Taking into account that a domain is expressed as D = {X, P(X)} and a task is ex-
pressed as T = {Y, f (·))}, a DS is defined as the source domain data, where
DS = {(xS1 , yS1), ..., (xSn , ySn)}, where xSi ∈ XS is the i − th data instance of DS, and
ySi ∈ YS is the corresponding class label for xSi . In the same way, DT is defined as the
target domain data, where DT = {(xT1 , yT1), ..., (xTn , yTn)}, where xTi ∈ XT is the i − th
data instance of DT , and ySi ∈ YS is the corresponding class label for xTi . Further, the source
task is notated as TS, the target task as TT and the source predictive function as fT(·).

Then, given a source domain DS with a corresponding source task TS and a target
domain DT with a corresponding task TT , transfer learning is the process of improving the
target predictive function fT(·) by using the related information from DS and TS, where
DS ̸= DT or TS ̸= TT .

2.3. The Network Architecture

The network architectures resulting from the different models implemented in this
study are generated according to the following stages:

• Input Layer;
• Base Model;
• Global Average Pooling 2D;
• Dropout;
• Dense Layer;
• Output Layer.

A representative diagram of the architecture used in this survey can be seen in Figure 2.

Figure 2. Representative diagram of the architecture.

As mentioned above, firstly, the dataset is pre-processed to resize the images to
200 × 200 pixels. As can be seen in the representative diagram of the architecture used,
the Input Layer takes pixel values of the sample that is going to be classified: that is to
say, 200 × 200 pixels ×3 channels, where each channel corresponds to a colour of the
RGB image.

Next, the processed data will enter this transfer learning model, which is the base
model of the classifier. Each Keras application expects a specific type of input pre-
processing, so these values will be normalised according to the base model that is selected.
It should be noted that in our survey, all base models have been pre-trained with the
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ImageNet database [30]. That is, once the ImageNet database has been specified, the val-
ues of the weights corresponding to the base model pre-trained with this database are
obtained. ImageNet is a large-scale ontology of images built upon the backbone of the
WordNet [31] structure.

Subsequently, Global Average Pooling 2D refers to the pooling operation that computes
the average value for spatial data across multiple layers.

The Dropout Layer randomly sets input neural network units to 0 with a frequency
determined by the rate at each step during training time; it helps prevent overfitting. Inputs
not set to 0 are scaled up by 1/(1 − rate) such that the sum of all inputs is unchanged.
In our architecture, the rate has been set to 20%.

Afterwards, the Dense Layer, often referred to as the fully connected layer, consists
of neurons connected to every neuron in the preceding layer with a specified activation
function. In this study, the Softmax activation function has been applied.

Finally, there is the Output Layer, which is comprised of as many neurons as there
are classes. Each output neuron employs the Softmax activation function to provide an
estimation of the probability that the processed sample belongs to the corresponding class
of each neuron. In our case, with four classes of species, the architecture includes four
output neurons.

3. Experimental Methodology

This section provides a theoretical explanation of the various methods employed to
derive the results in this study.

3.1. k-Fold Cross-Validation Method

Concerning the dimensions of the database, it is essential to consider that a dataset
consisting of 4 classes, each with 40 samples, results in a relatively small dataset when
compared to other studies utilizing Keras models with datasets containing thousands of
samples. To address this limitation and to ensure the robustness of the classifier, the cross-
validation technique has been employed in these experiments. This approach helps validate
the generated models and ensures that the results are not overly influenced by the parti-
tioning between test and training data.

Cross-validation is a resampling technique employed to assess machine learning
models on a restricted dataset of samples. This method involves iteratively calculating and
averaging the evaluation metrics on various partitions to provide a more comprehensive
and reliable assessment of the model’s performance.

In these experiments, the training dataset and the test dataset are grouped, respectively,
five times (5-folds) so that the different groupings have the same number of samples each
time but have different samples. Following this, each model is trained using the training
samples. Subsequently, the test dataset is classified to obtain metrics from each generated
model, facilitating evaluation based on these metric values. Lastly, the results are computed
as the mean of the values of these metrics obtained across the different folds. It is relevant
to note the fact that the training dataset is not exactly the same in the five groupings.
Each model is generated from its own training dataset, as the training dataset significantly
influences the adjustments of the model, even though all of them are based on the same
Keras base model type for each experiment.

The entire database is utilized in each distribution of samples and encompasses both
training and test samples. However, there are various approaches to distributing and
employing the original dataset. In light of this, two types of cross-validation can be
discerned: exhaustive and non-exhaustive cross-validation.

• Exhaustive cross-validation involves learning and testing all possible ways to divide
the original sample into a training and a validation set;

• Non-exhaustive cross-validation methods do not compute all possible ways of splitting
the original sample.
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Exhaustive cross-validation methods demand significant computational resources,
especially considering the dataset dimensions in this study. Specifically, in the case of
Leave-One-Out Cross-Validation (LOOCV), the model needs to be fitted as many times as
the number of samples, making it highly time-consuming, especially with 4 classes and
40 samples per class. Therefore, the cross-validation method employed in these experi-
ments is non-exhaustive: specifically, k-fold cross-validation (k-fold CV).

In k-fold cross-validation, the dataset is randomly partitioned into k groups or folds
of approximately equal size. The first fold is treated as a test set, and the method is fit on
the remaining k−1 folds. This procedure is repeated k times, with each iteration treating
a different group of samples as the test set. This iterative process yields k validations of
the model type, eventually culminating in the computation of the mean metrics, which are
used to evaluate the model. That is to say, in k-fold cross-validation, k distinct models are
obtained: each derived from different training samples and all based on the same type of
Keras model.

In these experiments, the training dataset and the test dataset are grouped five times
(5-fold cross-validation) so that the different groupings have the same number of samples
each time but different samples. With a total of 160 samples (40 samples for each species),
each k-fold comprises 128 training samples and 32 test samples. Furthermore, data are not
shuffled before each split, ensuring that no sample from the test dataset is repeated across
the five different groups.

During the model training process, the training dataset of each k-fold is further divided
into two other datasets: the training subset, which is used to train the model at each cycle
(epoch), and the validation subset. Validation split helps to progressively improve the model
performance by fine-tuning the model after each epoch.

In these experiments, a maximum of 100 epochs and a patience set to 20 epochs have
been defined for training each model. The objective of training is to minimize the loss. This
metric is monitored at the end of each epoch, and the training process concludes either
when the loss no longer decreases after 20 epochs or when 100 epochs of training have been
completed. The model weights are then restored to the weights from the best epoch in the
training process.

The test set provides the final metrics of the model after completing the training phase.
Lastly, the results are computed as the mean of the values of these metrics obtained across
the different folds.

It is crucial to note the fact that the training dataset is not identical across the five group-
ings, resulting in the generation of five distinct models from the same architecture. Each
model is created from its respective training dataset, as the training dataset significantly
influences the adjustments of the model even though all of them are based on the same
base model type for each experiment.

3.2. Performance Metrics

To cope with the great variety of the classification models, it is necessary to use metrics
or comparative schemes that allow qualitative analysis of the performance of the proposed
models and to contrast their results. In other words, these metrics can be employed to
evaluate the efficacy of the algorithms at classifying and identifying species in the images.
The definition of these metrics is based on the confusion matrix.

3.2.1. Confusion Matrix

Matrix confusion is a technique that allows evaluation of the precision of the image
classification algorithms. This technique assumes that the ground truth information is
characterized by the following properties:

• Each image is labelled as belonging to a certain class so that there are N reference
classes, {Ri}N

i=1;
• Reference classes are mutually exclusive; that is to say, a certain image has no different

classes (Equation (1)):
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Ri ∩ Rj = ∅,∇i ̸= j (1)

Assuming that each sample Ri from a particular species S to be evaluated is assigned
by an algorithm as belonging to a certain class Ci and having N classes, the dataset Ci
determines only one specific species to evaluate, meaning that two different sets have no
elements in common. Ultimately, there is no more than one species of the four classes
under study in each image in these experiments. This can be expressed mathematically as
indicated in Equation (2).

∪N
i=1Ci ∈ S and Ci ∩ Cj = ∅,∇i ̸= j (2)

A binary classifier model can be established in which the results are tagged as positives
(p) or negatives (n). In this theoretical framework, the prediction issue offers four possible
results from the classification carried out, where:

• TP is true positive: a test result that correctly indicates the presence of a condition
or characteristic;

• TN is true negative: a test result that correctly indicates the absence of a condition
or characteristic;

• FP is false positive: a test result that wrongly indicates that a particular condition or
attribute is present;

• FN is false negative: a test result that wrongly indicates that a particular condition or
attribute is absent.

Based on the above, an experiment can be defined with P positive instances and N
negative instances. The four possible outcomes can be represented in a 2 × 2 confusion
matrix (Table 2).

Table 2. Confusion matrix (2 × 2).

PREDICTION

Positive Prediction Negative Prediction

GROUND-TRUTH
CONDITION

Positive Condition True Positives (TP) False Negatives (FN)

Negative Condition False Positives (FP) True Negatives (TN)

From this confusion matrix, various metrics can be derived to evaluate the performance
of different prediction models. The performance of the classification algorithms from this
research was mainly evaluated using four metrics: Accuracy, Precision, Recall and F1 Score.

3.2.2. Accuracy

The Accuracy is defined as the fraction of correct predictions made by the classifier out
of the total number of predictions. Accuracy can also be calculated in terms of positive and
negative predictions as expressed by Equation (3):

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

3.2.3. Precision

The Precision, also called Positive Predictive Value (PPV), is the fraction of test images
classified as a specific class—as an example, class A—that are truly assigned to this class.
Precision can be calculated as expressed by Equation (4):

Precision =
TP

TP + FP
(4)
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3.2.4. Recall

Recall, also known as Sensitivity, Hit Rate or True Positive Rate (TPR), is the fraction of
test images from a class that are correctly identified to be assigned to this class. Recall can
be calculated as expressed by Equation (5):

Recall =
TP

TP + FN
(5)

3.2.5. F1 Score

The last two metrics can be used as parts of another metric that gives the average of
the Precision and Recall. This can be interpreted as the F1 Score, for which the best value is 1
and the worst value is 0. The F1 Score can be calculated as expressed by Equation (6):

F1 Score = 2 ·
(

Precision · Recall
Precision + Recall

)
(6)

4. Results

This section presents the outcomes obtained from the classification experiments con-
ducted with the implemented models. Based on these results, various aspects of the
comparison are discussed.

As mentioned earlier, each training session is conducted with a maximum of 100 epochs
for each k-fold. However, some models completed training in a lower number of epochs
across the 5-folds. Additionally, since the base models were configured in a manner such
that their internal parameters were not altered during training, their respective weights and
biases remain constant. Hence, there are both non-trainable parameters belonging to the
base model in use and trainable parameters belonging to the rest of the neural network in
each model.

Table 3 displays the maximum number of epochs for training the models and the
parameter count for each model. The first column includes row identifiers for ease of
reading, while the second column lists the names of the base models. The third column
indicates the maximum number of epochs, which corresponds to the k-fold with the most
epochs. The fourth column shows the total number of parameters in the entire network,
and the last column specifies the count of trainable parameters.

Table 3. Maximum number of epochs and number of parameters in the implemented models.

ID Base Model No. Epochs
(Maximum)

Parameters
(Weights + Biases)

Total Trainable

1 Xception 33 20,869,676 8196

2 VGG16 63 14,716,740 2052

3 VGG19 86 20,026,436 2052

4 ResNet50 99 23,595,908 8196

5 ResNet50V2 37 23,572,996 8196

6 ResNet101 100 42,666,372 8196

7 ResNet101V2 56 42,666,372 8196

8 ResNet152 88 58,379,140 8196

9 ResNet152V2 37 58,339,844 8196

10 InceptionV3 22 21,810,980 8196

11 InceptionResNetV2 41 54,342,884 6148

12 MobileNet 69 3,232,964 4100
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Table 3. Cont.

ID Base Model No. Epochs
(Maximum)

Parameters
(Weights + Biases)

Total Trainable

13 MobileNetV2 62 2,263,108 5124

14 DenseNet121 75 7,041,604 4100

15 DenseNet169 65 12,649,540 6660

16 DenseNet201 75 18,329,668 7684

17 EfficientNetB0 100 4,054,695 5124

18 EfficientNetB1 100 6,580,363 5124

19 EfficientNetB2 100 7,774,205 5636

20 EfficientNetB3 100 10,789,683 6148

21 EfficientNetB4 100 17,680,995 7172

22 EfficientNetB5 100 28,521,723 8196

23 EfficientNetB6 100 40,969,363 9220

24 EfficientNetB7 100 64,107,931 10,244

25 EfficientNetV2B0 100 5,924,436 5124

26 EfficientNetV2B1 100 6,936,248 5124

27 EfficientNetV2B2 100 8,775,010 5636

28 EfficientNetV2B3 100 12,936,770 6148

29 EfficientNetV2S 100 20,336,484 5124

30 EfficientNetV2M 100 53,155,512 5124

31 EfficientNetV2L 100 117,751,972 5124

Similarly, Table 4 shows the metrics obtained—Accuracy, Precision, Recall and
F1 Score—depending on the base model integrated in each model. Since the experi-
ments involved a cross-validation 5-fold method, these values are actually the means in
percentage from all k-folds for each metric and their corresponding standard deviations.

Table 4. Values of the metrics in the implemented models.

ID Base Model
Accuracy Precision Recall F1 Score

Mean (%) (Standard Deviation)

1 Xception 37.50 (6.85) 34.40 (7.80) 37.40 (7.16) 34.00 (7.69)

2 VGG16 81.25 (9.06) 81.60 (9.29) 82.20 (9.88) 80.00 (11.53)

3 VGG19 81.25 (7.13) 81.20 (8.93) 83.20 (9.88) 79.80 (11.53)

4 ResNet50 93.75 (4.42) 94.80 (4.32) 93.60 (5.32) 93.80 (5.07)

5 ResNet50V2 32.50 (7.02) 32.80 (10.18) 36.00 (8.37) 28.60 (5.55)

6 ResNet101 92.50 (7.02) 91.80 (8.50) 92.60 (6.84) 91.40 (8.59)

7 ResNet101V2 90.00 (3.06) 89.60 (3.78) 90.40 (2.88) 89.20 (2.86)

8 ResNet152 89.37 (2.50) 89.60 (3.21) 89.40 (2.70) 89.20 (3.56)

9 ResNet152V2 31.87 (7.23) 27.40 (4.93) 31.60 (8.90) 26.00 (7.18)

10 InceptionV3 29.37 (8.05) 33.40 (12.60) 30.40 (8.79) 28.40 (9.07)

11 InceptionResNetV2 30.62 (8.24) 33.40 (12.58) 31.40 (9.71) 25.40 (8.26)
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Table 4. Cont.

ID Base Model
Accuracy Precision Recall F1 Score

Mean (%) (Standard Deviation)

12 MobileNet 58.12 (8.29) 59.40 (10.62) 59.20 (8.87) 57.40 (10.78)

13 MobileNetV2 48.75 (6.12) 52.20 (3.35) 50.20 (6.87) 49.00 (6.63)

14 DenseNet121 55.62 (11.07) 59.80 (13.42) 55.40 (12.44) 53.20 (12.75)

15 DenseNet169 58.75 (8.24) 56.60 (9.42) 57.00 (9.19) 56.20 (9.28)

16 DenseNet201 54.37 (15.00) 58.20 (16.11) 55.20 (16.15) 54.40 (16.38)

17 EfficientNetB0 96.87 (1.98) 96.40 (2.51) 97.40 (2.19) 96.60 (2.51)

18 EfficientNetB1 98.12 (1.53) 97.60 (2.30) 98.20 (1.79) 97.80 (2.05)

19 EfficientNetB2 96.87 (1.97) 96.00 (4.12) 97.40 (1.82) 96.40 (3.29)

20 EfficientNetB3 97.50 (2.34) 97.40 (2.88) 97.60 (2.30) 97.40 (2.88)

21 EfficientNetB4 96.87 (1.98) 96.40 (2.30) 97.00 (2.55) 96.80 (2.17)

22 EfficientNetB5 95.00 (2.50) 95.20 (2.68) 95.40 (2.88) 95.20 (2.68)

23 EfficientNetB6 95.62 (3.19) 96.00 (3.81) 95.60 (3.21) 95.40 (3.91)

24 EfficientNetB7 95.00 (1.53) 95.20 (1.64) 94.40 (2.07) 94.60 (1.95)

25 EfficientNetV2B0 97.50 (2.34) 97.80 (2.49) 98.00 (2.12) 97.80 (2.49)

26 EfficientNetV2B1 98.12 (1.53) 98.20 (1.79) 97.60 (2.51) 97.80 (2.17)

27 EfficientNetV2B2 97.50 (3.64) 97.80 (3.49) 98.20 (3.03) 97.80 (3.49)

28 EfficientNetV2B3 98.75 (1.53) 1 98.60 (1.95) 1 98.80 (1.79) 1 98.60 (1.95) 1

29 EfficientNetV2S 97.50 (2.34) 97.80 (2.49) 97.80 (2.17) 97.60 (2.51)

30 EfficientNetV2M 96.87 (3.42) 97.00 (3.67) 97.20 (3.27) 97.00 (3.67)

31 EfficientNetV2L 97.50 (3.64) 97.20 (5.21) 97.20 (4.38) 97.20 (4.76)
1 Best outcomes.

Considering the results presented in both tables, it can be observed that in general,
models with a higher maximum number of epochs demonstrate better performance, as they
had more opportunities to learn.

The architecture with the highest number of total parameters is the one implemented
with the base model EfficientNetV2L. As can be observed, this model has a total of
117,751,972 parameters, of which only 5124 are trainable. This suggests that even though
the base model has a very high number of neurons in its hidden layers, there are not
many units in its last hidden layer if the architecture is compared with another one, such
as the one that implements the EfficientNetB7 base model. The last one has almost half of
the total parameters: 64,107,931; however, 10,244 of them are trainable. It is the model
that has the highest number of trainable parameters.

The models with the lowest number of trainable parameters, 2052, are those that
implement the base models VGG16 or VGG19. The architecture with the lowest number
of total parameters, 2,263,108, is the one with the base model MobileNetV2. Regarding the
metrics, the model with MobileNetV2 does not provide favourable results.

Nevertheless, despite the fact that the models with VGG16 and VGG19 have the lowest
number of trainable parameters, their metrics are quite favourable—around 80%—compared
to others such as the model with InceptionV3, which has more total and trainable parameters
but for which its metrics have disadvantageous values.

From this comparison, the model with the highest metrics is the one with Efficient-
NetV2B3, for which the values exceed 98%, and both the total and trainable parameters for
this model are not as high as for other models. That is to say, even though others have used
a larger number of parameters, they have not been able to achieve the performance offered
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by EfficientNetV2B3. The values of the different metrics and the number of parameters
obtained through this model, drawn, respectively, from Tables 3 and 4, are summarised
as follows:

• Total parameters: 12,936,770;
• Trainable parameters: 6148;
• Accuracy - Mean: 98.75%;
• Accuracy - Standard Deviation: 1.53;
• Precision - Mean: 98.60%;
• Precision - Standard Deviation: 1.95;
• Recall - Mean: 98.80%;
• Recall - Standard Deviation: 1.79;
• F1 Score - Mean: 98.60%;
• F1 Score - Standard Deviation: 1.95.

Considering the total number of samples in the database, there are 32 samples to be
classified in each k-fold. So it must be said that only two classification errors, each occurring
in different k-folds, have resulted in these metrics for this model.

5. Discussion

This research has served as a significant starting point for the automatic identification
of invasive alien species and endemic species in the Canary Islands. It has demonstrated
the potential of implementing transfer learning models as a part of neural network models,
where one of the most remarkable aspects is the number of models tested. The comparison
includes 31 models implemented from different Keras base models.

Based on the outcomes of the experiments conducted in this research, it can be stated
that while certain models implemented with Keras exhibit low-performance classification,
others represent a promising approach for the automated identification of these specific
species, which are relevant to the preservation of the fauna of this archipelago.

In addition, the research conducted in this study has demonstrated that certain im-
plemented base models exhibit a more favourable trend in the classification of the species
under study. Consequently, these models could be specifically considered in the devel-
opment of a practical system for identifying these particular species. Notably, they have
shown promising results even when subjected to samples from the Wild Dataset, implying
successful performance under adverse visibility conditions for the species. Although the
images in this study were sourced from various internet platforms, the insights gained
could be applied in future experiments using images captured with camera traps, given
their similar visibility characteristics. Thus, the findings of this research hold promise for
the development of monitoring systems based on camera traps for real-world applications.

In the comparison, the model that stands out among all others is the one imple-
menting the base mode EfficientNetV2B3. This particular model has demonstrated su-
perior performance by achieving the best outcomes for all metrics and incurring only
two classification errors.

Beforehand, it could be thought that due to chance, the samples were grouped in the
training, evaluation, and test sets in a manner that led to overly positive results. In other
words, samples causing higher classification errors could have been included in the training
set, while those leading to fewer errors were used in the test set.

Certainly, chance does play a fundamental role in sample distribution and influences
the results. However, it is important to note that the 5-fold cross-validation methodology
was employed, and the samples were not shuffled before creating each fold in this study.
Consequently, each sample was part of the test set in one of the folds. This methodology
is widely used in numerous publications and is considered a standard in model valida-
tion; this illustrates the variability of cases regarding whether or not a sample belongs to
the test set.

Taking this into consideration, the primary variable in this study was the base model
itself, and each model exhibited distinct performance characteristics due to the uniqueness
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of the data. A considerable number of models underwent testing, and based on the results
obtained, it is possible to categorize them into groups according to their performance.
Notably, the base models that yielded the best results belong to the EfficientNet family:
achieving a mean Accuracy of 90% and above. Following closely, some of the ResNet
models produced results around the 90% mark. Subsequently, both the VGG16 and VGG19
models surpassed 80%. Finally, the remaining models demonstrated a substantial decrease
in efficiency.

In conclusion, it is essential to highlight that even the models delivering the best results
had limitations in their learning stages due to the maximum value of epochs during training.
Hence, adjusting this hyperparameter could be explored in future research. Furthermore,
with regard to the use of the most favourable base models, potential improvements in
the architecture could be considered for subsequent work. For instance, incorporating
an Attention Layer or Transformers or applying Ensemble Learning techniques might be
worth exploring. Lastly, given the relatively low number of samples in the database and the
notable physical differences between the species, the optimistic results obtained by these
models should be interpreted with caution. Therefore, future studies should increase the
number of classes and, more importantly, the number of samples per class to ensure that
the research yields results that are conducive to the development phase.
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Appendix A. Example Images from the Dataset

This section showcases sample examples from the dataset utilized in the experiments
of this study. The dataset comprises images featuring the four species under investigation,
with specimens photographed under various conditions.

Appendix A.1. Example Images of the Good Insight Dataset

The subset of samples characterized by snapshots where specimens can be easily
distinguished by the human eye is referred to as the Good Insight Dataset.

(a) G. stehlini (spec. No. 1) (b) G. stehlini (spec. No. 2) (c) C. sexlineatus (spec. No. 3) (d) C. sexlineatus (spec. No. 4)

(e) C. calyptratus (spec. No. 5) (f) C. calyptratus(spec. No. 6) (g) P. regius (spec. No. 7) (h) P. regius (spec. No. 8)

Figure A1. Some specimens in the Good Insight Dataset: (a) G. stehlini (right profile of specimen No. 1). “La-
garto Gigante de Gran Canaria - Flickr - El Coleccionista de Instantes.jpg” by El Coleccionista de Instantes
Fotografía & Video (https://www.flickr.com/photos/azuaje/9415601095); used under CC-BY-SA-2.0
(https://creativecommons.org/licenses/by-sa/2.0)/Resized from original. Links accessed on 19 February
2024. (b) G. stehlini (right profile of specimen No. 2). “Lagarto Gigante de Gran Canaria (9418368268).jpg”
by El Coleccionista de Instantes Fotografía & Video (https://www.flickr.com/photos/azuaje/9418
368268/in/album-72157634886758237/); used under CC-BY-SA-2.0 (https://creativecommons.org/
licenses/by-sa/2.0)/Resized from original. Links accessed on 19 February 2024. (c) C. sexlineatus
(left profile of specimen No. 3). “Chalcides sexlineatus (Wroclaw zoo)-1.JPG” by Guérin Nicolas
(https://commons.wikimedia.org/wiki/File:Chalcides_sexlineatus_%28Wroclaw_zoo%29-1.JPG); used
under CC-BY-SA-3.0 (https://creativecommons.org/licenses/by-sa/3.0)/Resized from original. Links

https://www.flickr.com/photos/azuaje/9415601095
https://creativecommons.org/licenses/by-sa/2.0
https://www.flickr.com/photos/azuaje/9418368268/in/album-72157634886758237/
https://www.flickr.com/photos/azuaje/9418368268/in/album-72157634886758237/
https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/2.0
https://commons.wikimedia.org/wiki/File:Chalcides_sexlineatus_%28Wroclaw_zoo%29-1.JPG
https://creativecommons.org/licenses/by-sa/3.0
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accessed on 19 February 2024. (d) C. sexlineatus (top-down perspective of specimen No. 4).
Photo (https://wikifaunia.com/wp-content/uploads/2013/10/Lisa-grancanaria.jpg) found on
wikifaunia website (https://wikifaunia.com); which is distributed under CC-BY-4.0 (https://
creativecommons.org/licenses/by/4.0)/Resized from original. Links accessed on 19 February 2024.
(e) C. calyptratus (right profile of specimen No. 5). “Chamaeleo calyptratus 01.jpg” by H. Zell
(https://es.m.wikipedia.org/wiki/Archivo:Chamaeleo_calyptratus_01.jpg); used under CC-BY-SA-
3.0 (https://creativecommons.org/licenses/by-sa/3.0)/Resized from original. Links accessed on
19 February 2024. (f) C. calyptratus(left profile of specimen No. 6). Photo by Alicia León Ter-
riza (https://animalandia.educa.madrid.org/imagen.php?id=1346); used under GNU General Pub-
lic License (https://www.gnu.org/licenses/gpl-3.0.html)/Resized from original. Links accessed
on 19 February 2024. (g) P. regius (top-down perspective of specimen No. 7). “D85 3475 Ball
Python by Trisorn Triboon.jpg” by Tris T7 (https://commons.wikimedia.org/wiki/File:D85_3475
_Ball_Python_by_Trisorn_Triboon.jpg); used under CC-BY-SA-4.0 (https://creativecommons.org/
licenses/by-sa/4.0)/Resized from original. Links accessed on 19 February 2024. (h) P. regius (top-
down perspective of specimen No. 8). “D85 3455 Ball Python by Trisorn Triboon.jpg” by Tris
T7 (https://commons.wikimedia.org/wiki/File:D85_3455_Ball_Python_by_Trisorn_Triboon.jpg);
used under CC-BY-SA-4.0 (https://creativecommons.org/licenses/by-sa/4.0)/Resized from original.
Links accessed on 19 February 2024.

Appendix A.2. Example Images of the Wild Dataset

The subset of samples comprising snapshots in which specimens are shown in ways
that are challenging for the human eye to recognize or have been anticipated to pose
classification challenges for models is referred to as the Wild Dataset.

(a) G. stehlini (spec. No. 9) (b) G. stehlini (spec. No. 10) (c) C. sexlineatus (spec. No. 3) (d) C. sexlineatus (spec. No. 11)

(e) C. calyptratus (spec. No. 12) (f) C. calyptratus (spec. No. 13) (g) P. regius (specs. Nos. 8, 14) (h) P. regius (spec. No. 15)

Figure A2. Some specimens in the Wild Dataset: (a) G. stehlini (unfocused body of specimen No. 9).
“Gallotia stehlini EM1B3625 (40716701893).jpg” by Bengt Nyman (https://www.flickr.com/photos/
bnsd/40716701893); used under CC-BY-2.0 (https://creativecommons.org/licenses/by/2.0)/Resized
from original. Links accessed on 19 February 2024. (b) G. stehlini (perspective from behind of specimen
No. 10). “Lagarto de Gran Canaria (Gallotia stehlini) (5182756366).jpg” by Juan Emilio (https://www.
flickr.com/photos/juan_e/5182756366); used under CC-BY-SA-2.0 (https://creativecommons.org/
licenses/by-sa/2.0)/Resized from original. Links accessed on 19 February 2024. (c) C. sexlineatus (head
and front part of the body of specimen No. 3). “Chalcides sexlineatus (Wroclaw zoo)-2.JPG” by Guérin
Nicolas (https://commons.wikimedia.org/wiki/File:Chalcides_sexlineatus_%28Wroclaw_zoo%29
-2.JPG); used under CC-BY-SA-3.0 (https://creativecommons.org/licenses/by-sa/3.0)/Resized from
original. Links accessed on 19 February 2024. (d) C. sexlineatus (specimen No. 11 behind branches).

https://wikifaunia.com/wp-content/uploads/2013/10/Lisa-grancanaria.jpg
https://wikifaunia.com
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://es.m.wikipedia.org/wiki/Archivo:Chamaeleo_calyptratus_01.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://animalandia.educa.madrid.org/imagen.php?id=1346
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“GranCanariaSkink.jpg” by Juho.uski (https://commons.wikimedia.org/wiki/File:
GranCanariaSkink.jpg accessed on 19 February 2024); used under CC-BY-SA-3.0
(https://creativecommons.org/licenses/by-sa/3.0)/Resized from original. Links accessed
on 19 February 2024. (e) C. calyptratus (face of specimen No. 12 too close). Photo by Pedro
Reina (https://animalandia.educa.madrid.org/imagen.php?id=5550); used under GNU General
Public License (https://www.gnu.org/licenses/gpl-3.0.html)/Resized from original. Links
accessed on 19 February 2024. (f) C. calyptratus (specimen No. 13 behind branches). Photo
by Hugo Bogas Ovejero (https://animalandia.educa.madrid.org/imagen.php?id=20515); used
under GNU General Public License (https://www.gnu.org/licenses/gpl-3.0.html)/Resized
from original. Links accessed on 19 February 2024. (g) P. regius (two specimens:
No. 8 and No. 14). “D85 3458 Ball Python by Trisorn Triboon.jpg” by Tris T7
(https://commons.wikimedia.org/wiki/File:D85_3458_Ball_Python_by_Trisorn_Triboon.jpg);
used under CC-BY-SA-4.0 (https://creativecommons.org/licenses/by-sa/4.0)/Resized from original.
Links accessed on 19 February 2024. (h) P. regius (specimen No. 15 behind branches and leaves).
Photo by Lucy Keith-Diagne (https://www.inaturalist.org/observations/67137520); used under
CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0)/Resized from original. Links accessed
on 19 February 2024.
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