Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/130230
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Tinchev, Georgi | en_US |
dc.contributor.author | Penate-Sanchez, Adrian | en_US |
dc.contributor.author | Fallon, Maurice | en_US |
dc.date.accessioned | 2024-05-08T18:33:09Z | - |
dc.date.available | 2024-05-08T18:33:09Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 2377-3766 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/130230 | - |
dc.description.abstract | Localization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs. | en_US |
dc.language | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.ispartof | IEEE Robotics and Automation Letters | en_US |
dc.source | IEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 4 (2), ( 2019) | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Localization | en_US |
dc.subject.other | Deep learning in robotics and automation | en_US |
dc.subject.other | Visual learning | en_US |
dc.subject.other | SLAM | en_US |
dc.subject.other | Field Robots | en_US |
dc.title | Learning to see the wood for the trees: deep laser localization in urban and natural environments on a CPU | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LRA.2019.2895264 | en_US |
dc.identifier.scopus | 2-s2.0-85063310630 | - |
dc.contributor.orcid | 0000-0002-9910-6598 | - |
dc.contributor.orcid | 0000-0003-2876-3301 | - |
dc.contributor.orcid | 0000-0003-2940-0879 | - |
dc.identifier.issue | 2 | - |
dc.relation.volume | 4 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 8 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | April 2019 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 1,555 | |
dc.description.jcr | 3,608 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.esci | ESCI | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.