Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/130230
Título: | Learning to see the wood for the trees: deep laser localization in urban and natural environments on a CPU | Autores/as: | Tinchev, Georgi Penate-Sanchez, Adrian Fallon, Maurice |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Localization Deep learning in robotics and automation Visual learning SLAM Field Robots |
Fecha de publicación: | 2019 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Publicación seriada: | IEEE Robotics and Automation Letters | Resumen: | Localization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs. | URI: | http://hdl.handle.net/10553/130230 | ISSN: | 2377-3766 | DOI: | 10.1109/LRA.2019.2895264 | Fuente: | IEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 4 (2), ( 2019) |
Colección: | Artículos |
Citas SCOPUSTM
36
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
33
actualizado el 17-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.