Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/130230
DC FieldValueLanguage
dc.contributor.authorTinchev, Georgien_US
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorFallon, Mauriceen_US
dc.date.accessioned2024-05-08T18:33:09Z-
dc.date.available2024-05-08T18:33:09Z-
dc.date.issued2019en_US
dc.identifier.issn2377-3766en_US
dc.identifier.urihttp://hdl.handle.net/10553/130230-
dc.description.abstractLocalization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofIEEE Robotics and Automation Lettersen_US
dc.sourceIEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 4 (2), ( 2019)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherLocalizationen_US
dc.subject.otherDeep learning in robotics and automationen_US
dc.subject.otherVisual learningen_US
dc.subject.otherSLAMen_US
dc.subject.otherField Robotsen_US
dc.titleLearning to see the wood for the trees: deep laser localization in urban and natural environments on a CPUen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LRA.2019.2895264en_US
dc.identifier.scopus2-s2.0-85063310630-
dc.contributor.orcid0000-0002-9910-6598-
dc.contributor.orcid0000-0003-2876-3301-
dc.contributor.orcid0000-0003-2940-0879-
dc.identifier.issue2-
dc.relation.volume4en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.date.coverdateApril 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,555
dc.description.jcr3,608
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Appears in Collections:Artículos
Adobe PDF (1,24 MB)
Show simple item record

SCOPUSTM   
Citations

36
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

33
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.