Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130230
Título: Learning to see the wood for the trees: deep laser localization in urban and natural environments on a CPU
Autores/as: Tinchev, Georgi
Penate-Sanchez, Adrian 
Fallon, Maurice
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Localization
Deep learning in robotics and automation
Visual learning
SLAM
Field Robots
Fecha de publicación: 2019
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: IEEE Robotics and Automation Letters 
Resumen: Localization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs.
URI: http://hdl.handle.net/10553/130230
ISSN: 2377-3766
DOI: 10.1109/LRA.2019.2895264
Fuente: IEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 4 (2), ( 2019)
Colección:Artículos
Adobe PDF (1,24 MB)
Vista completa

Citas SCOPUSTM   

36
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 17-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.