Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130229
Título: SKD: keypoint detection for point clouds using saliency estimation
Autores/as: Tinchev, Georgi
Peñate Sánchez, Adrián 
Fallon, Maurice
Visual learning
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Deep learning for visual perception
Recognition
Visual learning
Fecha de publicación: 2021
Publicación seriada: IEEE Robotics and Automation Letters 
Resumen: We present SKD, a novel keypoint detector that uses saliency to determine the best candidates from a point cloud for tasks such as registration and reconstruction. The approach can be applied to any differentiable deep learning descriptor by using the gradients of that descriptor with respect to the 3D position of the input points as a measure of their saliency. The saliency is combined with the original descriptor and context information in a neural network, which is trained to learn robust keypoint candidates. The key intuition behind this approach is that keypoints are not extracted solely as a result of the geometry surrounding a point, but also take into account the descriptor's response. The approach was evaluated on two large LIDAR datasets - the Oxford RobotCar dataset and the KITTI dataset, where we obtain up to 50% improvement over the state-of-the-art in both matchability and repeatability. When performing sparse matching with the keypoints computed by our method we achieve a higher inlier ratio and faster convergence.
URI: http://hdl.handle.net/10553/130229
ISSN: 2377-3766
DOI: 10.1109/LRA.2021.3065224
Fuente: IEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 6 (2), ( 2021)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

16
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 10-nov-2024

Visitas

64
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.