Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130229
Campo DC Valoridioma
dc.contributor.authorTinchev, Georgien_US
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorFallon, Mauriceen_US
dc.contributor.authorVisual learningen_US
dc.date.accessioned2024-05-08T18:16:19Z-
dc.date.available2024-05-08T18:16:19Z-
dc.date.issued2021en_US
dc.identifier.issn2377-3766en_US
dc.identifier.urihttp://hdl.handle.net/10553/130229-
dc.description.abstractWe present SKD, a novel keypoint detector that uses saliency to determine the best candidates from a point cloud for tasks such as registration and reconstruction. The approach can be applied to any differentiable deep learning descriptor by using the gradients of that descriptor with respect to the 3D position of the input points as a measure of their saliency. The saliency is combined with the original descriptor and context information in a neural network, which is trained to learn robust keypoint candidates. The key intuition behind this approach is that keypoints are not extracted solely as a result of the geometry surrounding a point, but also take into account the descriptor's response. The approach was evaluated on two large LIDAR datasets - the Oxford RobotCar dataset and the KITTI dataset, where we obtain up to 50% improvement over the state-of-the-art in both matchability and repeatability. When performing sparse matching with the keypoints computed by our method we achieve a higher inlier ratio and faster convergence.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Robotics and Automation Lettersen_US
dc.sourceIEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 6 (2), ( 2021)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherDeep learning for visual perceptionen_US
dc.subject.otherRecognitionen_US
dc.subject.otherVisual learningen_US
dc.titleSKD: keypoint detection for point clouds using saliency estimationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LRA.2021.3065224en_US
dc.identifier.scopus2-s2.0-85102684873-
dc.contributor.orcid0000-0002-9910-6598-
dc.contributor.orcid0000-0003-2876-3301-
dc.contributor.orcid0000-0003-2940-0879-
dc.identifier.issue2-
dc.relation.volume6en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.date.coverdateApril 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr2,206
dc.description.jcr4,321
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.esciESCI
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.