Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129902
Título: Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme
Autores/as: de los Reyes, Alexander Mulet
Lord, Victoria Hyde
Buemi, Maria Elena
Gandía, Daniel
Gómez Déniz, Luis 
Alemán, Maikel Noriega
Suárez, Cecilia
Palabras clave: Artificial neural networks
Automatic segmentation
Glioblastoma multiforme
Image processing
Radiomics
Fecha de publicación: 2024
Publicación seriada: Expert Systems 
Resumen: Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumour that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumour is being intensively studied. Here, the automatic three dimensional segmentation of the GBM is achieved with its related subzones (active tumour, inner necrosis, and peripheral oedema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan–Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these pre liminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7%, and 66.4% for the entire region of interest, active tumour, oedema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results pres ented here evidence that it is possible to achieve the automatic segmentation of this kind of tumour by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation
URI: http://hdl.handle.net/10553/129902
ISSN: 0266-4720
DOI: 10.1111/exsy.13598
Fuente: Expert Systems [ISSN 0266-4720], (Abril 2024)
Colección:Artículos
Adobe PDF (2,51 MB)
Vista completa

Visitas

92
actualizado el 05-oct-2024

Descargas

30
actualizado el 05-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.