Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129902
Campo DC Valoridioma
dc.contributor.authorde los Reyes, Alexander Muleten_US
dc.contributor.authorLord, Victoria Hydeen_US
dc.contributor.authorBuemi, Maria Elenaen_US
dc.contributor.authorGandía, Danielen_US
dc.contributor.authorGómez Déniz, Luisen_US
dc.contributor.authorAlemán, Maikel Noriegaen_US
dc.contributor.authorSuárez, Ceciliaen_US
dc.date.accessioned2024-04-18T15:08:55Z-
dc.date.available2024-04-18T15:08:55Z-
dc.date.issued2024en_US
dc.identifier.issn0266-4720en_US
dc.identifier.urihttp://hdl.handle.net/10553/129902-
dc.description.abstractGlioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumour that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumour is being intensively studied. Here, the automatic three dimensional segmentation of the GBM is achieved with its related subzones (active tumour, inner necrosis, and peripheral oedema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan–Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these pre liminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7%, and 66.4% for the entire region of interest, active tumour, oedema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results pres ented here evidence that it is possible to achieve the automatic segmentation of this kind of tumour by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluationen_US
dc.languageengen_US
dc.relation.ispartofExpert Systemsen_US
dc.sourceExpert Systems [ISSN 0266-4720], (Abril 2024)en_US
dc.subject.otherArtificial neural networksen_US
dc.subject.otherAutomatic segmentationen_US
dc.subject.otherGlioblastoma multiformeen_US
dc.subject.otherImage processingen_US
dc.subject.otherRadiomicsen_US
dc.titleCombined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiformeen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.rights.licenseBY-
dc.identifier.doi10.1111/exsy.13598en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Artículoen_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.date.coverdateAbril 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,761
dc.description.jcr3,3
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGómez Déniz, Luis-
Colección:Artículos
Adobe PDF (2,51 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.