Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129819
Campo DC Valoridioma
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorGazzoni, Marcoen_US
dc.contributor.authorMarenzi, Elisaen_US
dc.contributor.authorLeón, Raquelen_US
dc.contributor.authorCallico, Gustavo Marreroen_US
dc.contributor.authorDanese, Giovannien_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2024-04-09T09:46:12Z-
dc.date.available2024-04-09T09:46:12Z-
dc.date.issued2023en_US
dc.identifier.isbn9798350344196en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129819-
dc.description.abstractRecently, several medical applications have relied on hyperspectral imaging. This technology enables both automated diagnosis and surgeon guidance. The employed algorithms adopt machine and deep learning methods to classify the images. In particular, Vision Transformers are a recent deep architecture that have been used to classify hyperspectral images of skin cancers achieving interesting results. However, deep architectures are computationally intensive and parallel architectures are mandatory to ensure a fast classification (depending on the application type even in real time). In this paper, we propose a parallel Vision Transformer architecture exploiting a low power GPU targeting the development of a portable diagnostic device. The classification time and power consumption of the low power board are compared with the performance of a desktop GPU. The results clearly highlight the suitability of the low power GPU to develop a portable diagnostic system based on hyperspectral imaging.en_US
dc.languageengen_US
dc.sourceProceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023[EISSN ], p. 111-116, (Enero 2023)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherLow Power Gpuen_US
dc.subject.otherMedical Hyperspectral Imagingen_US
dc.subject.otherParallel Algorithmsen_US
dc.subject.otherVision Transformeren_US
dc.titleAn Attention-Based Parallel Algorithm for Hyperspectral Skin Cancer Classification on Low-Power GPUsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference26th Euromicro Conference on Digital System Design (DSD 2023)en_US
dc.identifier.doi10.1109/DSD60849.2023.00025en_US
dc.identifier.scopus85189150599-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid56091390500-
dc.contributor.authorscopusid58547824100-
dc.contributor.authorscopusid55151473500-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid6604051702-
dc.contributor.authorscopusid55937698500-
dc.description.lastpage116en_US
dc.description.firstpage111en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents152802-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate07-09-2009-
crisitem.event.eventsenddate11-09-2009-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.