Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129819
Título: An Attention-Based Parallel Algorithm for Hyperspectral Skin Cancer Classification on Low-Power GPUs
Autores/as: Torti, Emanuele
Gazzoni, Marco
Marenzi, Elisa
León, Raquel 
Callico, Gustavo Marrero 
Danese, Giovanni
Leporati, Francesco
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Low Power Gpu
Medical Hyperspectral Imaging
Parallel Algorithms
Vision Transformer
Fecha de publicación: 2023
Conferencia: 26th Euromicro Conference on Digital System Design (DSD 2023) 
Resumen: Recently, several medical applications have relied on hyperspectral imaging. This technology enables both automated diagnosis and surgeon guidance. The employed algorithms adopt machine and deep learning methods to classify the images. In particular, Vision Transformers are a recent deep architecture that have been used to classify hyperspectral images of skin cancers achieving interesting results. However, deep architectures are computationally intensive and parallel architectures are mandatory to ensure a fast classification (depending on the application type even in real time). In this paper, we propose a parallel Vision Transformer architecture exploiting a low power GPU targeting the development of a portable diagnostic device. The classification time and power consumption of the low power board are compared with the performance of a desktop GPU. The results clearly highlight the suitability of the low power GPU to develop a portable diagnostic system based on hyperspectral imaging.
URI: http://hdl.handle.net/10553/129819
ISBN: 9798350344196
DOI: 10.1109/DSD60849.2023.00025
Fuente: Proceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023[EISSN ], p. 111-116, (Enero 2023)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

2
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 15-dic-2024

Visitas

86
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.