Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/129819
Título: | An Attention-Based Parallel Algorithm for Hyperspectral Skin Cancer Classification on Low-Power GPUs | Autores/as: | Torti, Emanuele Gazzoni, Marco Marenzi, Elisa León, Raquel Callico, Gustavo Marrero Danese, Giovanni Leporati, Francesco |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Low Power Gpu Medical Hyperspectral Imaging Parallel Algorithms Vision Transformer |
Fecha de publicación: | 2023 | Conferencia: | 26th Euromicro Conference on Digital System Design (DSD 2023) | Resumen: | Recently, several medical applications have relied on hyperspectral imaging. This technology enables both automated diagnosis and surgeon guidance. The employed algorithms adopt machine and deep learning methods to classify the images. In particular, Vision Transformers are a recent deep architecture that have been used to classify hyperspectral images of skin cancers achieving interesting results. However, deep architectures are computationally intensive and parallel architectures are mandatory to ensure a fast classification (depending on the application type even in real time). In this paper, we propose a parallel Vision Transformer architecture exploiting a low power GPU targeting the development of a portable diagnostic device. The classification time and power consumption of the low power board are compared with the performance of a desktop GPU. The results clearly highlight the suitability of the low power GPU to develop a portable diagnostic system based on hyperspectral imaging. | URI: | http://hdl.handle.net/10553/129819 | ISBN: | 9798350344196 | DOI: | 10.1109/DSD60849.2023.00025 | Fuente: | Proceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023[EISSN ], p. 111-116, (Enero 2023) |
Colección: | Actas de congresos |
Citas SCOPUSTM
2
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 15-dic-2024
Visitas
86
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.