Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128999
Campo DC Valoridioma
dc.contributor.authorMedina Ramírez, Miguel Ángelen_US
dc.contributor.authorGuerra Artal, Cayetanoen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2024-02-20T15:43:27Z-
dc.date.available2024-02-20T15:43:27Z-
dc.date.issued2024en_US
dc.identifier.isbn978-1-923107-18-2en_US
dc.identifier.urihttp://hdl.handle.net/10553/128999-
dc.description.abstractTask-oriented dialogue systems (TODS) have become crucial for users to interact with machines and computers using natural language. One of its key com- ponents is the dialogue manager, which guides the conversation towards a good goal for the user by providing the best possible response. Previous works have proposed rule-based systems (RBS), reinforcement learning (RL), and supervised learning (SL) as solutions for the correct dialogue management; in other words, select the best response given input by the user. This work explores the impact of dataset quality on the performance of dialogue managers. We delve into po- tential errors in popular datasets, such as Multiwoz 2.1 and SGD. For our inves- tigation, we developed a synthetic dialogue generator to regulate the type and magnitude of errors introduced. Our findings suggest that dataset inaccuracies, like mislabeling, might play a significant role in the challenges faced in dialogue management.en_US
dc.languageengen_US
dc.source10th International Conference on Natural Language Processing (NATP 2024) February 24 ~ 25, 2024, Vancouver, Canadaen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherDialog systemsen_US
dc.subject.otherDialogue managementen_US
dc.subject.otherDataset qualityen_US
dc.subject.otherSupervised learningen_US
dc.titleAnalysis of the impact of dataset quality on task-oriented dialogue managementen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference10th International Conference on Natural Language Processing (NATP 2024)en_US
dc.identifier.doi10.5121/csit.2024.140420en_US
dc.identifier.urlhttps://acsty2024.org/natp/papers-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdatefebrero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate24-02-2024-
crisitem.event.eventsenddate25-02-2024-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-6734-2257-
crisitem.author.orcid0000-0003-1381-2262-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMedina Ramírez, Miguel Ángel-
crisitem.author.fullNameGuerra Artal, Cayetano-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Actas de congresos
Vista resumida

Visitas

59
actualizado el 26-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.