Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/128999
DC FieldValueLanguage
dc.contributor.authorMedina Ramírez, Miguel Ángelen_US
dc.contributor.authorGuerra Artal, Cayetanoen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2024-02-20T15:43:27Z-
dc.date.available2024-02-20T15:43:27Z-
dc.date.issued2024en_US
dc.identifier.isbn978-1-923107-18-2en_US
dc.identifier.urihttp://hdl.handle.net/10553/128999-
dc.description.abstractTask-oriented dialogue systems (TODS) have become crucial for users to interact with machines and computers using natural language. One of its key com- ponents is the dialogue manager, which guides the conversation towards a good goal for the user by providing the best possible response. Previous works have proposed rule-based systems (RBS), reinforcement learning (RL), and supervised learning (SL) as solutions for the correct dialogue management; in other words, select the best response given input by the user. This work explores the impact of dataset quality on the performance of dialogue managers. We delve into po- tential errors in popular datasets, such as Multiwoz 2.1 and SGD. For our inves- tigation, we developed a synthetic dialogue generator to regulate the type and magnitude of errors introduced. Our findings suggest that dataset inaccuracies, like mislabeling, might play a significant role in the challenges faced in dialogue management.en_US
dc.languageengen_US
dc.source10th International Conference on Natural Language Processing (NATP 2024) February 24 ~ 25, 2024, Vancouver, Canadaen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherDialog systemsen_US
dc.subject.otherDialogue managementen_US
dc.subject.otherDataset qualityen_US
dc.subject.otherSupervised learningen_US
dc.titleAnalysis of the impact of dataset quality on task-oriented dialogue managementen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference10th International Conference on Natural Language Processing (NATP 2024)en_US
dc.identifier.doi10.5121/csit.2024.140420en_US
dc.identifier.urlhttps://acsty2024.org/natp/papers-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdatefebrero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate24-02-2024-
crisitem.event.eventsenddate25-02-2024-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-6734-2257-
crisitem.author.orcid0000-0003-1381-2262-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMedina Ramírez, Miguel Ángel-
crisitem.author.fullNameGuerra Artal, Cayetano-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

59
checked on May 26, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.